The roles of textural images in improving land-cover classification in the Brazilian Amazon.

Detalhes bibliográficos
Autor(a) principal: LU, D.
Data de Publicação: 2014
Outros Autores: LI, G., MORAN, E., DUTRA, L., BATISTELLA, M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1001846
Resumo: Texture has long been recognized as valuable in improving land-cover classification, but how data from different sensors with varying spatial resolutions affect the selection of textural images is poorly understood. This research examines textural images from the Landsat Thematic Mapper (TM), ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar), the SPOT (Satellite Pour l?Observation de la Terre) high-resolution geometric (HRG) instrument, and the QuickBird satellite, which have pixel sizes of 30, 12.5, 10/5, and 0.6 m, respectively, for land-cover classification in the Brazilian Amazon. GLCM (grey-level co-occurrence matrix)-based texture measures with various sizes of moving windows are used to extract textural images from the aforementioned sensor data. An index based on standard deviations and correlation coefficients is used to identify the best texture combination following separability analysis of land-cover types based on training sample plots. A maximum likelihood classifier is used to conduct the land-cover classification, and the results are evaluated using field survey data. This research shows the importance of textural images in improving land-cover classification, and the importance becomes more significant as the pixel size improved. It is also shown that texture is especially important in the case of the ALOS PALSAR and QuickBird data. Overall, textural images have less capability in distinguishing land-cover types than spectral signatures, especially for Landsat TM imagery, but incorporation of textures into radiometric data is valuable for improving landcover classification. The classification accuracy can be improved by 5.2?13.4% as the pixel size changes from 30 to 0.6 m.
id EMBR_e673487aa5a10e144176febc3ae03cc2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1001846
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling The roles of textural images in improving land-cover classification in the Brazilian Amazon.Advanced Land Observing SatelliteLand-cover classificationLandsat Thematic MapperPhased Array type L-band Synthetic Aperture RadarTexture has long been recognized as valuable in improving land-cover classification, but how data from different sensors with varying spatial resolutions affect the selection of textural images is poorly understood. This research examines textural images from the Landsat Thematic Mapper (TM), ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar), the SPOT (Satellite Pour l?Observation de la Terre) high-resolution geometric (HRG) instrument, and the QuickBird satellite, which have pixel sizes of 30, 12.5, 10/5, and 0.6 m, respectively, for land-cover classification in the Brazilian Amazon. GLCM (grey-level co-occurrence matrix)-based texture measures with various sizes of moving windows are used to extract textural images from the aforementioned sensor data. An index based on standard deviations and correlation coefficients is used to identify the best texture combination following separability analysis of land-cover types based on training sample plots. A maximum likelihood classifier is used to conduct the land-cover classification, and the results are evaluated using field survey data. This research shows the importance of textural images in improving land-cover classification, and the importance becomes more significant as the pixel size improved. It is also shown that texture is especially important in the case of the ALOS PALSAR and QuickBird data. Overall, textural images have less capability in distinguishing land-cover types than spectral signatures, especially for Landsat TM imagery, but incorporation of textures into radiometric data is valuable for improving landcover classification. The classification accuracy can be improved by 5.2?13.4% as the pixel size changes from 30 to 0.6 m.DENGSHENG LU, Zhejiang A&F University/Michigan State University; GUIYING LI, Michigan State University; EMILIO MORAN, Michigan State University; LUCIANO DUTRA, INPE; MATEUS BATISTELLA, CNPM.LU, D.LI, G.MORAN, E.DUTRA, L.BATISTELLA, M.2014-12-05T11:11:11Z2014-12-05T11:11:11Z2014-12-0520142014-12-09T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Remote Sensing, v. 35, n. 24, p. 8188-8207, 2014.0143-1161http://www.alice.cnptia.embrapa.br/alice/handle/doc/100184610.1080/01431161.2014.980920enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T01:35:35Zoai:www.alice.cnptia.embrapa.br:doc/1001846Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T01:35:35falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T01:35:35Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv The roles of textural images in improving land-cover classification in the Brazilian Amazon.
title The roles of textural images in improving land-cover classification in the Brazilian Amazon.
spellingShingle The roles of textural images in improving land-cover classification in the Brazilian Amazon.
LU, D.
Advanced Land Observing Satellite
Land-cover classification
Landsat Thematic Mapper
Phased Array type L-band Synthetic Aperture Radar
title_short The roles of textural images in improving land-cover classification in the Brazilian Amazon.
title_full The roles of textural images in improving land-cover classification in the Brazilian Amazon.
title_fullStr The roles of textural images in improving land-cover classification in the Brazilian Amazon.
title_full_unstemmed The roles of textural images in improving land-cover classification in the Brazilian Amazon.
title_sort The roles of textural images in improving land-cover classification in the Brazilian Amazon.
author LU, D.
author_facet LU, D.
LI, G.
MORAN, E.
DUTRA, L.
BATISTELLA, M.
author_role author
author2 LI, G.
MORAN, E.
DUTRA, L.
BATISTELLA, M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv DENGSHENG LU, Zhejiang A&F University/Michigan State University; GUIYING LI, Michigan State University; EMILIO MORAN, Michigan State University; LUCIANO DUTRA, INPE; MATEUS BATISTELLA, CNPM.
dc.contributor.author.fl_str_mv LU, D.
LI, G.
MORAN, E.
DUTRA, L.
BATISTELLA, M.
dc.subject.por.fl_str_mv Advanced Land Observing Satellite
Land-cover classification
Landsat Thematic Mapper
Phased Array type L-band Synthetic Aperture Radar
topic Advanced Land Observing Satellite
Land-cover classification
Landsat Thematic Mapper
Phased Array type L-band Synthetic Aperture Radar
description Texture has long been recognized as valuable in improving land-cover classification, but how data from different sensors with varying spatial resolutions affect the selection of textural images is poorly understood. This research examines textural images from the Landsat Thematic Mapper (TM), ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar), the SPOT (Satellite Pour l?Observation de la Terre) high-resolution geometric (HRG) instrument, and the QuickBird satellite, which have pixel sizes of 30, 12.5, 10/5, and 0.6 m, respectively, for land-cover classification in the Brazilian Amazon. GLCM (grey-level co-occurrence matrix)-based texture measures with various sizes of moving windows are used to extract textural images from the aforementioned sensor data. An index based on standard deviations and correlation coefficients is used to identify the best texture combination following separability analysis of land-cover types based on training sample plots. A maximum likelihood classifier is used to conduct the land-cover classification, and the results are evaluated using field survey data. This research shows the importance of textural images in improving land-cover classification, and the importance becomes more significant as the pixel size improved. It is also shown that texture is especially important in the case of the ALOS PALSAR and QuickBird data. Overall, textural images have less capability in distinguishing land-cover types than spectral signatures, especially for Landsat TM imagery, but incorporation of textures into radiometric data is valuable for improving landcover classification. The classification accuracy can be improved by 5.2?13.4% as the pixel size changes from 30 to 0.6 m.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-05T11:11:11Z
2014-12-05T11:11:11Z
2014-12-05
2014
2014-12-09T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv International Journal of Remote Sensing, v. 35, n. 24, p. 8188-8207, 2014.
0143-1161
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1001846
10.1080/01431161.2014.980920
identifier_str_mv International Journal of Remote Sensing, v. 35, n. 24, p. 8188-8207, 2014.
0143-1161
10.1080/01431161.2014.980920
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1001846
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503397988106240