Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).

Detalhes bibliográficos
Autor(a) principal: CHIARELLO, F.
Data de Publicação: 2019
Outros Autores: STEINER, M. T. A., OLIVEIRA, E. B. de, ARCE, J. E., FERREIRA, J. C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1115699
Resumo: Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type ? classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.
id EMBR_e89a1bfd61081c68787dcdd317c38a1d
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1115699
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).Bibliometric ReviewMultilayer PerceptronForest Engineering ProblemsRevisão sistemáticaRevisão BibliométricaInteligência artificialArtificial intelligenceSystematic reviewArtificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type ? classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.Flávio Chiarello, PUC-PR; Maria Teresinha Arns Steiner, PUC-PR; EDILSON BATISTA DE OLIVEIRA, CNPF; Júlio Eduardo Arce, UFPR; Júlio César Ferreira, PUC-PR.CHIARELLO, F.STEINER, M. T. A.OLIVEIRA, E. B. deARCE, J. E.FERREIRA, J. C.2019-12-03T00:36:35Z2019-12-03T00:36:35Z2019-12-0220192019-12-03T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleCerne, v. 25 n. 2, p. 140-155, Apr./June 2019.http://www.alice.cnptia.embrapa.br/alice/handle/doc/111569910.1590/01047760201925022626enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2019-12-03T00:36:42Zoai:www.alice.cnptia.embrapa.br:doc/1115699Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542019-12-03T00:36:42falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542019-12-03T00:36:42Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
title Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
spellingShingle Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
CHIARELLO, F.
Bibliometric Review
Multilayer Perceptron
Forest Engineering Problems
Revisão sistemática
Revisão Bibliométrica
Inteligência artificial
Artificial intelligence
Systematic review
title_short Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
title_full Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
title_fullStr Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
title_full_unstemmed Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
title_sort Artificial neural networks applied in forest biometrics and modeling: state of the art (January/2007 to July/2018).
author CHIARELLO, F.
author_facet CHIARELLO, F.
STEINER, M. T. A.
OLIVEIRA, E. B. de
ARCE, J. E.
FERREIRA, J. C.
author_role author
author2 STEINER, M. T. A.
OLIVEIRA, E. B. de
ARCE, J. E.
FERREIRA, J. C.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Flávio Chiarello, PUC-PR; Maria Teresinha Arns Steiner, PUC-PR; EDILSON BATISTA DE OLIVEIRA, CNPF; Júlio Eduardo Arce, UFPR; Júlio César Ferreira, PUC-PR.
dc.contributor.author.fl_str_mv CHIARELLO, F.
STEINER, M. T. A.
OLIVEIRA, E. B. de
ARCE, J. E.
FERREIRA, J. C.
dc.subject.por.fl_str_mv Bibliometric Review
Multilayer Perceptron
Forest Engineering Problems
Revisão sistemática
Revisão Bibliométrica
Inteligência artificial
Artificial intelligence
Systematic review
topic Bibliometric Review
Multilayer Perceptron
Forest Engineering Problems
Revisão sistemática
Revisão Bibliométrica
Inteligência artificial
Artificial intelligence
Systematic review
description Artificial Intelligence has been an important support tool in different spheres of activity, enabling knowledge aggregation, process optimization and the application of methodologies capable of solving complex real problems. Despite focusing on a wide range of successful metrics, the Artificial Neural Network (ANN) approach, a technique similar to the central nervous system, has gained notoriety and relevance with regard to the classification of standards, intrinsic parameter estimates, remote sense, data mining and other possibilities. This article aims to conduct a systematic review, involving some bibliometric aspects, to detect the application of ANNs in the field of Forest Engineering, particularly in the prognosis of the essential parameters for forest inventory, analyzing the construction of the scopes, implementation of networks (type ? classification), the software used and complementary techniques. Of the 1,140 articles collected from three research databases (Science Direct, Scopus and Web of Science), 43 articles underwent these analyses. The results show that the number of works within this scope has increased continuously, with 32% of the analyzed articles predicting the final total marketable volume, 78% making use of Multilayer Perceptron Networks (MLP, Multilayer Perceptron) and 63% from Brazilian researchers.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-03T00:36:35Z
2019-12-03T00:36:35Z
2019-12-02
2019
2019-12-03T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Cerne, v. 25 n. 2, p. 140-155, Apr./June 2019.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1115699
10.1590/01047760201925022626
identifier_str_mv Cerne, v. 25 n. 2, p. 140-155, Apr./June 2019.
10.1590/01047760201925022626
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1115699
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503484968534016