Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.

Detalhes bibliográficos
Autor(a) principal: LOPES, F. B.
Data de Publicação: 2020
Outros Autores: MAGNABOSCO, C. de U., PASSAFARO, T. L., BRUNES, L. C., COSTA, M. F. O. e, EIFERT, E. da C., NARCISO, M. G., ROSA, G. J. M., LOBO, R. B., BALDI, F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1131678
Resumo: The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes C&#960; in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non&#8208;autosomal chromosomes, with minor allele frequency <5%, deviation from HWE (p < 10?6), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree&#8208;based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes C&#960;) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattle
id EMBR_ecd6e7e7e12d9c9ef5d138483b949c83
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1131678
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.Maciez da carneCarne maciaCarneGado de CorteThe goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes C&#960; in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non&#8208;autosomal chromosomes, with minor allele frequency <5%, deviation from HWE (p < 10?6), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree&#8208;based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes C&#960;) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattleCLAUDIO DE ULHOA MAGNABOSCO, CPAC; MARCOS FERNANDO OLIVEIRA E COSTA, CNPAF; EDUARDO DA COSTA EIFERT, CPAC; MARCELO GONCALVES NARCISO, CNPAF.LOPES, F. B.MAGNABOSCO, C. de U.PASSAFARO, T. L.BRUNES, L. C.COSTA, M. F. O. eEIFERT, E. da C.NARCISO, M. G.ROSA, G. J. M.LOBO, R. B.BALDI, F.2021-05-05T15:30:53Z2021-05-05T15:30:53Z2021-05-052020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 438-448Journal of Animal Breeding and Genetics, v. 137, n. 5, 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1131678enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-05-05T15:31:03Zoai:www.alice.cnptia.embrapa.br:doc/1131678Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-05-05T15:31:03falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-05-05T15:31:03Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
title Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
spellingShingle Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
LOPES, F. B.
Maciez da carne
Carne macia
Carne
Gado de Corte
title_short Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
title_full Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
title_fullStr Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
title_full_unstemmed Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
title_sort Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
author LOPES, F. B.
author_facet LOPES, F. B.
MAGNABOSCO, C. de U.
PASSAFARO, T. L.
BRUNES, L. C.
COSTA, M. F. O. e
EIFERT, E. da C.
NARCISO, M. G.
ROSA, G. J. M.
LOBO, R. B.
BALDI, F.
author_role author
author2 MAGNABOSCO, C. de U.
PASSAFARO, T. L.
BRUNES, L. C.
COSTA, M. F. O. e
EIFERT, E. da C.
NARCISO, M. G.
ROSA, G. J. M.
LOBO, R. B.
BALDI, F.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv CLAUDIO DE ULHOA MAGNABOSCO, CPAC; MARCOS FERNANDO OLIVEIRA E COSTA, CNPAF; EDUARDO DA COSTA EIFERT, CPAC; MARCELO GONCALVES NARCISO, CNPAF.
dc.contributor.author.fl_str_mv LOPES, F. B.
MAGNABOSCO, C. de U.
PASSAFARO, T. L.
BRUNES, L. C.
COSTA, M. F. O. e
EIFERT, E. da C.
NARCISO, M. G.
ROSA, G. J. M.
LOBO, R. B.
BALDI, F.
dc.subject.por.fl_str_mv Maciez da carne
Carne macia
Carne
Gado de Corte
topic Maciez da carne
Carne macia
Carne
Gado de Corte
description The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes C&#960; in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non&#8208;autosomal chromosomes, with minor allele frequency <5%, deviation from HWE (p < 10?6), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree&#8208;based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes C&#960;) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattle
publishDate 2020
dc.date.none.fl_str_mv 2020
2021-05-05T15:30:53Z
2021-05-05T15:30:53Z
2021-05-05
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Journal of Animal Breeding and Genetics, v. 137, n. 5, 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1131678
identifier_str_mv Journal of Animal Breeding and Genetics, v. 137, n. 5, 2020.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1131678
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 438-448
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503504940761088