Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.

Detalhes bibliográficos
Autor(a) principal: CARNEIRO, F. M.
Data de Publicação: 2023
Outros Autores: BRITO FILHO, A. L. de, FERREIRA, F. M., SEBEN JUNIOR, G. de F., BRANDÃO, Z. N., SILVA, R. P. da, SHIRATSUCHI, L. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156016
https://doi.org/10.1016/j.atech.2023.100292
Resumo: Remote sensing (RS) in agriculture has been widely used for mapping soil, plant, and atmosphere attributes, as well as helping in the sustainable production of the crop by providing the possibility of application at variable rates and estimating the productivity of agricultural crops. In this way, proximal sensors used by RS help producers in decision-making to increase productivity. This research aims to identify the best feature importance ranking to the Random Forest Classifier to predict cotton yield and select which one best correlates with cotton yield. This work was developed in four commercial fields on a Newellton, LA, USA farm. We evaluated the cotton in different years as 2019, 2020, and 2021. The variables evaluated were: soil parameters, topographic indices, elevation derivatives, and orbital remote sensing. The soil sensor used was: GSSI Profiler EMP400 (soil electromagnetic induction sensor) at a frequency of 15 kHz, and the RS data were collected from satellite images from Sentinel 2 (passive sensor) and active sensor from LiDAR (Light Detection and Ranging). For training (70%) and validation (30%) of dataset results, Spearman correlation was used between sensors and cotton yield data, machine learning (Random Forest Classifier and Regressor - RFC and RFR). The metric parameters were the coefficient of determination (R2), the Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE). This study found that profiler, Sentinel-2 (blue, red, and green), TPI, LiDAR, and RTK elevation show the best correlations to predicting cotton yield.
id EMBR_ef6f78178ffead41c99c838aa596ce5e
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1156016
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.Produção sustentávelSensores proximaisRandom forestSatellite imagerySustainable productionProximal sensorsInteligência artificialImagem de satéliteRSDecision treesÁrvores de decisãoAlgodãoEstrutura do SoloSensoriamento RemotoGossypium HirsutumArtificial intelligenceCottonSoil structureRemote sensingRemote sensing (RS) in agriculture has been widely used for mapping soil, plant, and atmosphere attributes, as well as helping in the sustainable production of the crop by providing the possibility of application at variable rates and estimating the productivity of agricultural crops. In this way, proximal sensors used by RS help producers in decision-making to increase productivity. This research aims to identify the best feature importance ranking to the Random Forest Classifier to predict cotton yield and select which one best correlates with cotton yield. This work was developed in four commercial fields on a Newellton, LA, USA farm. We evaluated the cotton in different years as 2019, 2020, and 2021. The variables evaluated were: soil parameters, topographic indices, elevation derivatives, and orbital remote sensing. The soil sensor used was: GSSI Profiler EMP400 (soil electromagnetic induction sensor) at a frequency of 15 kHz, and the RS data were collected from satellite images from Sentinel 2 (passive sensor) and active sensor from LiDAR (Light Detection and Ranging). For training (70%) and validation (30%) of dataset results, Spearman correlation was used between sensors and cotton yield data, machine learning (Random Forest Classifier and Regressor - RFC and RFR). The metric parameters were the coefficient of determination (R2), the Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE). This study found that profiler, Sentinel-2 (blue, red, and green), TPI, LiDAR, and RTK elevation show the best correlations to predicting cotton yield.FRANCIELE MORLIN CARNEIRO, UTFPR; ARMANDO LOPES DE BRITO FILHO, UNESP; FRANCIELLE MORELLI FERREIRA, UNESP; GETULIO DE FREITAS SEBEN JUNIOR, UNEMAT; ZIANY NEIVA BRANDÃO, CNPA; ROUVERSON PEREIRA DA SILVA, UNESP; LUCIANO SHOZO SHIRATSUCHI, LOUISIANA STATE UNIVERSITY.CARNEIRO, F. M.BRITO FILHO, A. L. deFERREIRA, F. M.SEBEN JUNIOR, G. de F.BRANDÃO, Z. N.SILVA, R. P. daSHIRATSUCHI, L. S.2023-08-21T18:29:35Z2023-08-21T18:29:35Z2023-08-212023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleSmart Agricultural Technology, v. 5, p. 1-10, 100292, 2023.2772-3755http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156016https://doi.org/10.1016/j.atech.2023.100292enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-08-21T18:29:35Zoai:www.alice.cnptia.embrapa.br:doc/1156016Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-08-21T18:29:35falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-08-21T18:29:35Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
title Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
spellingShingle Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
CARNEIRO, F. M.
Produção sustentável
Sensores proximais
Random forest
Satellite imagery
Sustainable production
Proximal sensors
Inteligência artificial
Imagem de satélite
RS
Decision trees
Árvores de decisão
Algodão
Estrutura do Solo
Sensoriamento Remoto
Gossypium Hirsutum
Artificial intelligence
Cotton
Soil structure
Remote sensing
title_short Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
title_full Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
title_fullStr Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
title_full_unstemmed Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
title_sort Soil and satellite remote sensing variables importance using machine learning to predict cotton yield.
author CARNEIRO, F. M.
author_facet CARNEIRO, F. M.
BRITO FILHO, A. L. de
FERREIRA, F. M.
SEBEN JUNIOR, G. de F.
BRANDÃO, Z. N.
SILVA, R. P. da
SHIRATSUCHI, L. S.
author_role author
author2 BRITO FILHO, A. L. de
FERREIRA, F. M.
SEBEN JUNIOR, G. de F.
BRANDÃO, Z. N.
SILVA, R. P. da
SHIRATSUCHI, L. S.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv FRANCIELE MORLIN CARNEIRO, UTFPR; ARMANDO LOPES DE BRITO FILHO, UNESP; FRANCIELLE MORELLI FERREIRA, UNESP; GETULIO DE FREITAS SEBEN JUNIOR, UNEMAT; ZIANY NEIVA BRANDÃO, CNPA; ROUVERSON PEREIRA DA SILVA, UNESP; LUCIANO SHOZO SHIRATSUCHI, LOUISIANA STATE UNIVERSITY.
dc.contributor.author.fl_str_mv CARNEIRO, F. M.
BRITO FILHO, A. L. de
FERREIRA, F. M.
SEBEN JUNIOR, G. de F.
BRANDÃO, Z. N.
SILVA, R. P. da
SHIRATSUCHI, L. S.
dc.subject.por.fl_str_mv Produção sustentável
Sensores proximais
Random forest
Satellite imagery
Sustainable production
Proximal sensors
Inteligência artificial
Imagem de satélite
RS
Decision trees
Árvores de decisão
Algodão
Estrutura do Solo
Sensoriamento Remoto
Gossypium Hirsutum
Artificial intelligence
Cotton
Soil structure
Remote sensing
topic Produção sustentável
Sensores proximais
Random forest
Satellite imagery
Sustainable production
Proximal sensors
Inteligência artificial
Imagem de satélite
RS
Decision trees
Árvores de decisão
Algodão
Estrutura do Solo
Sensoriamento Remoto
Gossypium Hirsutum
Artificial intelligence
Cotton
Soil structure
Remote sensing
description Remote sensing (RS) in agriculture has been widely used for mapping soil, plant, and atmosphere attributes, as well as helping in the sustainable production of the crop by providing the possibility of application at variable rates and estimating the productivity of agricultural crops. In this way, proximal sensors used by RS help producers in decision-making to increase productivity. This research aims to identify the best feature importance ranking to the Random Forest Classifier to predict cotton yield and select which one best correlates with cotton yield. This work was developed in four commercial fields on a Newellton, LA, USA farm. We evaluated the cotton in different years as 2019, 2020, and 2021. The variables evaluated were: soil parameters, topographic indices, elevation derivatives, and orbital remote sensing. The soil sensor used was: GSSI Profiler EMP400 (soil electromagnetic induction sensor) at a frequency of 15 kHz, and the RS data were collected from satellite images from Sentinel 2 (passive sensor) and active sensor from LiDAR (Light Detection and Ranging). For training (70%) and validation (30%) of dataset results, Spearman correlation was used between sensors and cotton yield data, machine learning (Random Forest Classifier and Regressor - RFC and RFR). The metric parameters were the coefficient of determination (R2), the Mean Absolute Error (MAE), and the Root Mean Square Error (RMSE). This study found that profiler, Sentinel-2 (blue, red, and green), TPI, LiDAR, and RTK elevation show the best correlations to predicting cotton yield.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-21T18:29:35Z
2023-08-21T18:29:35Z
2023-08-21
2023
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Smart Agricultural Technology, v. 5, p. 1-10, 100292, 2023.
2772-3755
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156016
https://doi.org/10.1016/j.atech.2023.100292
identifier_str_mv Smart Agricultural Technology, v. 5, p. 1-10, 100292, 2023.
2772-3755
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1156016
https://doi.org/10.1016/j.atech.2023.100292
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503548433596416