Sugarcane mapping in Paraná State Brazil using MODIS EVI images.

Detalhes bibliográficos
Autor(a) principal: CECHIM JÚNIOR, C.
Data de Publicação: 2020
Outros Autores: JOHANN, J. A., ANTUNES, J. F. G., DEPPE, F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618
https://doi.org/10.23953/cloud.ijarsg.451
Resumo: Abstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping.
id EMBR_f789b1f9388f8db3a7d60f9224c54eef
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1123618
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Sugarcane mapping in Paraná State Brazil using MODIS EVI images.Índice de vegetaçãoMapeamento de cana-de-açúcarAnnual agricultureTimeseriesCana de AçúcarAgriculturaSensoriamento RemotoAgricultureSugarcaneTime series analysisVegetation indexRemote sensingAbstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping.CLÓVIS CECHIM JÚNIOR, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; FLÁVIO DEPPE, SIMEPAR.CECHIM JÚNIOR, C.JOHANN, J. A.ANTUNES, J. F. G.DEPPE, F.2020-07-04T11:10:47Z2020-07-04T11:10:47Z2020-07-032020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618https://doi.org/10.23953/cloud.ijarsg.451enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-07-04T11:10:55Zoai:www.alice.cnptia.embrapa.br:doc/1123618Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-07-04T11:10:55falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-07-04T11:10:55Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
title Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
spellingShingle Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
CECHIM JÚNIOR, C.
Índice de vegetação
Mapeamento de cana-de-açúcar
Annual agriculture
Timeseries
Cana de Açúcar
Agricultura
Sensoriamento Remoto
Agriculture
Sugarcane
Time series analysis
Vegetation index
Remote sensing
title_short Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
title_full Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
title_fullStr Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
title_full_unstemmed Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
title_sort Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
author CECHIM JÚNIOR, C.
author_facet CECHIM JÚNIOR, C.
JOHANN, J. A.
ANTUNES, J. F. G.
DEPPE, F.
author_role author
author2 JOHANN, J. A.
ANTUNES, J. F. G.
DEPPE, F.
author2_role author
author
author
dc.contributor.none.fl_str_mv CLÓVIS CECHIM JÚNIOR, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; FLÁVIO DEPPE, SIMEPAR.
dc.contributor.author.fl_str_mv CECHIM JÚNIOR, C.
JOHANN, J. A.
ANTUNES, J. F. G.
DEPPE, F.
dc.subject.por.fl_str_mv Índice de vegetação
Mapeamento de cana-de-açúcar
Annual agriculture
Timeseries
Cana de Açúcar
Agricultura
Sensoriamento Remoto
Agriculture
Sugarcane
Time series analysis
Vegetation index
Remote sensing
topic Índice de vegetação
Mapeamento de cana-de-açúcar
Annual agriculture
Timeseries
Cana de Açúcar
Agricultura
Sensoriamento Remoto
Agriculture
Sugarcane
Time series analysis
Vegetation index
Remote sensing
description Abstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-04T11:10:47Z
2020-07-04T11:10:47Z
2020-07-03
2020
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv International Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618
https://doi.org/10.23953/cloud.ijarsg.451
identifier_str_mv International Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618
https://doi.org/10.23953/cloud.ijarsg.451
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503493750358016