Sugarcane mapping in Paraná State Brazil using MODIS EVI images.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618 https://doi.org/10.23953/cloud.ijarsg.451 |
Resumo: | Abstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping. |
id |
EMBR_f789b1f9388f8db3a7d60f9224c54eef |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1123618 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images.Índice de vegetaçãoMapeamento de cana-de-açúcarAnnual agricultureTimeseriesCana de AçúcarAgriculturaSensoriamento RemotoAgricultureSugarcaneTime series analysisVegetation indexRemote sensingAbstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping.CLÓVIS CECHIM JÚNIOR, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; FLÁVIO DEPPE, SIMEPAR.CECHIM JÚNIOR, C.JOHANN, J. A.ANTUNES, J. F. G.DEPPE, F.2020-07-04T11:10:47Z2020-07-04T11:10:47Z2020-07-032020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618https://doi.org/10.23953/cloud.ijarsg.451enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-07-04T11:10:55Zoai:www.alice.cnptia.embrapa.br:doc/1123618Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542020-07-04T11:10:55falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-07-04T11:10:55Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
title |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
spellingShingle |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. CECHIM JÚNIOR, C. Índice de vegetação Mapeamento de cana-de-açúcar Annual agriculture Timeseries Cana de Açúcar Agricultura Sensoriamento Remoto Agriculture Sugarcane Time series analysis Vegetation index Remote sensing |
title_short |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
title_full |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
title_fullStr |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
title_full_unstemmed |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
title_sort |
Sugarcane mapping in Paraná State Brazil using MODIS EVI images. |
author |
CECHIM JÚNIOR, C. |
author_facet |
CECHIM JÚNIOR, C. JOHANN, J. A. ANTUNES, J. F. G. DEPPE, F. |
author_role |
author |
author2 |
JOHANN, J. A. ANTUNES, J. F. G. DEPPE, F. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
CLÓVIS CECHIM JÚNIOR, Unioeste; JERRY ADRIANI JOHANN, Unioeste; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; FLÁVIO DEPPE, SIMEPAR. |
dc.contributor.author.fl_str_mv |
CECHIM JÚNIOR, C. JOHANN, J. A. ANTUNES, J. F. G. DEPPE, F. |
dc.subject.por.fl_str_mv |
Índice de vegetação Mapeamento de cana-de-açúcar Annual agriculture Timeseries Cana de Açúcar Agricultura Sensoriamento Remoto Agriculture Sugarcane Time series analysis Vegetation index Remote sensing |
topic |
Índice de vegetação Mapeamento de cana-de-açúcar Annual agriculture Timeseries Cana de Açúcar Agricultura Sensoriamento Remoto Agriculture Sugarcane Time series analysis Vegetation index Remote sensing |
description |
Abstract Sugarcane cultivated in Brazil deserves attention because it makes the Country the world's largest producer of sugar and ethanol. The aim of this work was to develop and evaluate a methodology for sugarcane mapping in Paraná State, Brazil using temporal series of the MODIS EVI, for 2010/2011 to 2013/2014 crop seasons. The methodology included supervised classification Fuzzy ARTMAP, taking as input variables such as terms of harmonics amplitude and phase, and phenological metrics of culture. Area estimates indicated a moderate and strong correlation (rs), ranging from 0.62 to 0.71 comparing with IBGE official data and from 0.79 to 0.87 with the Canasat data. To assess mapping accuracy, Canasat vector maps were used as reference to build the confusion matrix. The method developed based on Fuzzy ARTMAP proved efficient to map and estimate the acreage of sugarcane in the State of Paraná, due to digital processing techniques used in homogeneous samples, selection of phenological seasonal metrics, and decomposition of images in accordance with harmonics and supervised training. These together minimized the neural network forecast errors. Results indicate that the methodology is appropriate for sugarcane mapping. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-04T11:10:47Z 2020-07-04T11:10:47Z 2020-07-03 2020 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
International Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618 https://doi.org/10.23953/cloud.ijarsg.451 |
identifier_str_mv |
International Journal of Advanced Remote Sensing and GIS, v. 9, n. 1, p. 3205-3221, 2020. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1123618 https://doi.org/10.23953/cloud.ijarsg.451 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503493750358016 |