Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.

Detalhes bibliográficos
Autor(a) principal: SANTOS, L. T. dos
Data de Publicação: 2022
Outros Autores: WERNER, J. P. S., REIS, A. A. dos, TORO, A. P. G., ANTUNES, J. F. G., COUTINHO, A. C., LAMPARELLI, R. A. C., MAGALHÃES, P. S. G., ESQUERDO, J. C. D. M., FIGUEIREDO, G. K. D. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716
https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022
Resumo: ABSTRACT: With the recent evolution in the sensor's spatial resolution, such as the MultiSpectral Imager (MSI) of the Sentinel-2 mission, the need to use segmentation techniques in satellite images has increased. Although the advantages of image segmentation to delineate agricultural fields in images are already known, the literature shows that it is rarely used to consider temporal changes in highly managed regions with the intensification of agricultural activities. Therefore, this work aimed to evaluate a multitemporal segmentation method based on the coefficient of variation of spectral bands and vegetation indices obtained from Sentinel-2 images, considering two agricultural years (2018-2019 and 2019-2020) in an area with agricultural intensification. Images of the coefficient of variation represented the spectro-temporal dynamics within the study area. These images were also used to apply an edge detection filter (Sobel) to verify their performance. The region-based algorithm Watershed Segmentation (WS) was used in the segmentation process. Subsequently, to assess the quality of the segmentation results produced, the metrics Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2) were calculated from manually delineated reference objects. The segmentation achieved its best performance when applied to the unfiltered coefficient of variation images of spectral bands with an ED2 equal to 7.289 and 2.529 for 2018-2019 and 2019-2020, respectively. There was a tendency for the WS algorithm to produce over-segmentation in the study area; however, its use proved to be effective in identifying objects in a dynamic area with the intensification of agricultural activities.
id EMBR_fa71ce79c2dfef21f76900e046a19d37
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1145716
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.Coeficiente de variaçãoÍndice de vegetaçãoSegmentação de bacias hidrográficasDetecção de bordasIntensificação agrícolaCoefficient of variationOBIAWatershed segmentationEdge detectionSobelAssesSegVegetation indexABSTRACT: With the recent evolution in the sensor's spatial resolution, such as the MultiSpectral Imager (MSI) of the Sentinel-2 mission, the need to use segmentation techniques in satellite images has increased. Although the advantages of image segmentation to delineate agricultural fields in images are already known, the literature shows that it is rarely used to consider temporal changes in highly managed regions with the intensification of agricultural activities. Therefore, this work aimed to evaluate a multitemporal segmentation method based on the coefficient of variation of spectral bands and vegetation indices obtained from Sentinel-2 images, considering two agricultural years (2018-2019 and 2019-2020) in an area with agricultural intensification. Images of the coefficient of variation represented the spectro-temporal dynamics within the study area. These images were also used to apply an edge detection filter (Sobel) to verify their performance. The region-based algorithm Watershed Segmentation (WS) was used in the segmentation process. Subsequently, to assess the quality of the segmentation results produced, the metrics Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2) were calculated from manually delineated reference objects. The segmentation achieved its best performance when applied to the unfiltered coefficient of variation images of spectral bands with an ED2 equal to 7.289 and 2.529 for 2018-2019 and 2019-2020, respectively. There was a tendency for the WS algorithm to produce over-segmentation in the study area; however, its use proved to be effective in identifying objects in a dynamic area with the intensification of agricultural activities.Edition of proceedings of the 2022 edition of the XXIVth ISPRS Congress, Nice, France.FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; FEAGRI/UNICAMP.SANTOS, L. T. dosWERNER, J. P. S.REIS, A. A. dosTORO, A. P. G.ANTUNES, J. F. G.COUTINHO, A. C.LAMPARELLI, R. A. C.MAGALHÃES, P. S. G.ESQUERDO, J. C. D. M.FIGUEIREDO, G. K. D. A.2022-08-24T19:26:29Z2022-08-24T19:26:29Z2022-08-242022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3-2022, p. 389-395, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-08-24T19:26:38Zoai:www.alice.cnptia.embrapa.br:doc/1145716Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-08-24T19:26:38falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-08-24T19:26:38Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
title Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
spellingShingle Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
SANTOS, L. T. dos
Coeficiente de variação
Índice de vegetação
Segmentação de bacias hidrográficas
Detecção de bordas
Intensificação agrícola
Coefficient of variation
OBIA
Watershed segmentation
Edge detection
Sobel
AssesSeg
Vegetation index
title_short Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
title_full Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
title_fullStr Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
title_full_unstemmed Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
title_sort Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
author SANTOS, L. T. dos
author_facet SANTOS, L. T. dos
WERNER, J. P. S.
REIS, A. A. dos
TORO, A. P. G.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
ESQUERDO, J. C. D. M.
FIGUEIREDO, G. K. D. A.
author_role author
author2 WERNER, J. P. S.
REIS, A. A. dos
TORO, A. P. G.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
ESQUERDO, J. C. D. M.
FIGUEIREDO, G. K. D. A.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; FEAGRI/UNICAMP.
dc.contributor.author.fl_str_mv SANTOS, L. T. dos
WERNER, J. P. S.
REIS, A. A. dos
TORO, A. P. G.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
ESQUERDO, J. C. D. M.
FIGUEIREDO, G. K. D. A.
dc.subject.por.fl_str_mv Coeficiente de variação
Índice de vegetação
Segmentação de bacias hidrográficas
Detecção de bordas
Intensificação agrícola
Coefficient of variation
OBIA
Watershed segmentation
Edge detection
Sobel
AssesSeg
Vegetation index
topic Coeficiente de variação
Índice de vegetação
Segmentação de bacias hidrográficas
Detecção de bordas
Intensificação agrícola
Coefficient of variation
OBIA
Watershed segmentation
Edge detection
Sobel
AssesSeg
Vegetation index
description ABSTRACT: With the recent evolution in the sensor's spatial resolution, such as the MultiSpectral Imager (MSI) of the Sentinel-2 mission, the need to use segmentation techniques in satellite images has increased. Although the advantages of image segmentation to delineate agricultural fields in images are already known, the literature shows that it is rarely used to consider temporal changes in highly managed regions with the intensification of agricultural activities. Therefore, this work aimed to evaluate a multitemporal segmentation method based on the coefficient of variation of spectral bands and vegetation indices obtained from Sentinel-2 images, considering two agricultural years (2018-2019 and 2019-2020) in an area with agricultural intensification. Images of the coefficient of variation represented the spectro-temporal dynamics within the study area. These images were also used to apply an edge detection filter (Sobel) to verify their performance. The region-based algorithm Watershed Segmentation (WS) was used in the segmentation process. Subsequently, to assess the quality of the segmentation results produced, the metrics Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2) were calculated from manually delineated reference objects. The segmentation achieved its best performance when applied to the unfiltered coefficient of variation images of spectral bands with an ED2 equal to 7.289 and 2.529 for 2018-2019 and 2019-2020, respectively. There was a tendency for the WS algorithm to produce over-segmentation in the study area; however, its use proved to be effective in identifying objects in a dynamic area with the intensification of agricultural activities.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-24T19:26:29Z
2022-08-24T19:26:29Z
2022-08-24
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3-2022, p. 389-395, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716
https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022
identifier_str_mv ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3-2022, p. 389-395, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716
https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503529967124480