Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716 https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022 |
Resumo: | ABSTRACT: With the recent evolution in the sensor's spatial resolution, such as the MultiSpectral Imager (MSI) of the Sentinel-2 mission, the need to use segmentation techniques in satellite images has increased. Although the advantages of image segmentation to delineate agricultural fields in images are already known, the literature shows that it is rarely used to consider temporal changes in highly managed regions with the intensification of agricultural activities. Therefore, this work aimed to evaluate a multitemporal segmentation method based on the coefficient of variation of spectral bands and vegetation indices obtained from Sentinel-2 images, considering two agricultural years (2018-2019 and 2019-2020) in an area with agricultural intensification. Images of the coefficient of variation represented the spectro-temporal dynamics within the study area. These images were also used to apply an edge detection filter (Sobel) to verify their performance. The region-based algorithm Watershed Segmentation (WS) was used in the segmentation process. Subsequently, to assess the quality of the segmentation results produced, the metrics Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2) were calculated from manually delineated reference objects. The segmentation achieved its best performance when applied to the unfiltered coefficient of variation images of spectral bands with an ED2 equal to 7.289 and 2.529 for 2018-2019 and 2019-2020, respectively. There was a tendency for the WS algorithm to produce over-segmentation in the study area; however, its use proved to be effective in identifying objects in a dynamic area with the intensification of agricultural activities. |
id |
EMBR_fa71ce79c2dfef21f76900e046a19d37 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1145716 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil.Coeficiente de variaçãoÍndice de vegetaçãoSegmentação de bacias hidrográficasDetecção de bordasIntensificação agrícolaCoefficient of variationOBIAWatershed segmentationEdge detectionSobelAssesSegVegetation indexABSTRACT: With the recent evolution in the sensor's spatial resolution, such as the MultiSpectral Imager (MSI) of the Sentinel-2 mission, the need to use segmentation techniques in satellite images has increased. Although the advantages of image segmentation to delineate agricultural fields in images are already known, the literature shows that it is rarely used to consider temporal changes in highly managed regions with the intensification of agricultural activities. Therefore, this work aimed to evaluate a multitemporal segmentation method based on the coefficient of variation of spectral bands and vegetation indices obtained from Sentinel-2 images, considering two agricultural years (2018-2019 and 2019-2020) in an area with agricultural intensification. Images of the coefficient of variation represented the spectro-temporal dynamics within the study area. These images were also used to apply an edge detection filter (Sobel) to verify their performance. The region-based algorithm Watershed Segmentation (WS) was used in the segmentation process. Subsequently, to assess the quality of the segmentation results produced, the metrics Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2) were calculated from manually delineated reference objects. The segmentation achieved its best performance when applied to the unfiltered coefficient of variation images of spectral bands with an ED2 equal to 7.289 and 2.529 for 2018-2019 and 2019-2020, respectively. There was a tendency for the WS algorithm to produce over-segmentation in the study area; however, its use proved to be effective in identifying objects in a dynamic area with the intensification of agricultural activities.Edition of proceedings of the 2022 edition of the XXIVth ISPRS Congress, Nice, France.FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; FEAGRI/UNICAMP.SANTOS, L. T. dosWERNER, J. P. S.REIS, A. A. dosTORO, A. P. G.ANTUNES, J. F. G.COUTINHO, A. C.LAMPARELLI, R. A. C.MAGALHÃES, P. S. G.ESQUERDO, J. C. D. M.FIGUEIREDO, G. K. D. A.2022-08-24T19:26:29Z2022-08-24T19:26:29Z2022-08-242022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3-2022, p. 389-395, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-08-24T19:26:38Zoai:www.alice.cnptia.embrapa.br:doc/1145716Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-08-24T19:26:38falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-08-24T19:26:38Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
title |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
spellingShingle |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. SANTOS, L. T. dos Coeficiente de variação Índice de vegetação Segmentação de bacias hidrográficas Detecção de bordas Intensificação agrícola Coefficient of variation OBIA Watershed segmentation Edge detection Sobel AssesSeg Vegetation index |
title_short |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
title_full |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
title_fullStr |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
title_full_unstemmed |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
title_sort |
Multitemporal segmentation of Sentinel-2 images in an agricultural intensification region in Brazil. |
author |
SANTOS, L. T. dos |
author_facet |
SANTOS, L. T. dos WERNER, J. P. S. REIS, A. A. dos TORO, A. P. G. ANTUNES, J. F. G. COUTINHO, A. C. LAMPARELLI, R. A. C. MAGALHÃES, P. S. G. ESQUERDO, J. C. D. M. FIGUEIREDO, G. K. D. A. |
author_role |
author |
author2 |
WERNER, J. P. S. REIS, A. A. dos TORO, A. P. G. ANTUNES, J. F. G. COUTINHO, A. C. LAMPARELLI, R. A. C. MAGALHÃES, P. S. G. ESQUERDO, J. C. D. M. FIGUEIREDO, G. K. D. A. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; FEAGRI/UNICAMP. |
dc.contributor.author.fl_str_mv |
SANTOS, L. T. dos WERNER, J. P. S. REIS, A. A. dos TORO, A. P. G. ANTUNES, J. F. G. COUTINHO, A. C. LAMPARELLI, R. A. C. MAGALHÃES, P. S. G. ESQUERDO, J. C. D. M. FIGUEIREDO, G. K. D. A. |
dc.subject.por.fl_str_mv |
Coeficiente de variação Índice de vegetação Segmentação de bacias hidrográficas Detecção de bordas Intensificação agrícola Coefficient of variation OBIA Watershed segmentation Edge detection Sobel AssesSeg Vegetation index |
topic |
Coeficiente de variação Índice de vegetação Segmentação de bacias hidrográficas Detecção de bordas Intensificação agrícola Coefficient of variation OBIA Watershed segmentation Edge detection Sobel AssesSeg Vegetation index |
description |
ABSTRACT: With the recent evolution in the sensor's spatial resolution, such as the MultiSpectral Imager (MSI) of the Sentinel-2 mission, the need to use segmentation techniques in satellite images has increased. Although the advantages of image segmentation to delineate agricultural fields in images are already known, the literature shows that it is rarely used to consider temporal changes in highly managed regions with the intensification of agricultural activities. Therefore, this work aimed to evaluate a multitemporal segmentation method based on the coefficient of variation of spectral bands and vegetation indices obtained from Sentinel-2 images, considering two agricultural years (2018-2019 and 2019-2020) in an area with agricultural intensification. Images of the coefficient of variation represented the spectro-temporal dynamics within the study area. These images were also used to apply an edge detection filter (Sobel) to verify their performance. The region-based algorithm Watershed Segmentation (WS) was used in the segmentation process. Subsequently, to assess the quality of the segmentation results produced, the metrics Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR), and Euclidean Distance 2 (ED2) were calculated from manually delineated reference objects. The segmentation achieved its best performance when applied to the unfiltered coefficient of variation images of spectral bands with an ED2 equal to 7.289 and 2.529 for 2018-2019 and 2019-2020, respectively. There was a tendency for the WS algorithm to produce over-segmentation in the study area; however, its use proved to be effective in identifying objects in a dynamic area with the intensification of agricultural activities. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-24T19:26:29Z 2022-08-24T19:26:29Z 2022-08-24 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3-2022, p. 389-395, 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716 https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022 |
identifier_str_mv |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3-2022, p. 389-395, 2022. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145716 https://doi.org/10.5194/isprs-annals-V-3-2022-389-2022 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503529967124480 |