A joint learning approach for genomic prediction in polyploid grasses.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365 https://doi.org/10.1038/s41598-022-16417-7 |
Resumo: | Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in diferent cross-validation scenarios. By combining classifcation and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains. |
id |
EMBR_fb894bb8439c852b965ad8305352675b |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1150365 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
A joint learning approach for genomic prediction in polyploid grasses.Cana de AçúcarGramínea ForrageiraRecurso GenéticoForage grassesGenetic resourcesPlant breedingPoaceaePolyploidySaccharumSugarcanePoaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in diferent cross-validation scenarios. By combining classifcation and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.ALEXANDRE HILD AONO, UNIVERSIDADE DE CAMPINAS, UNIVERSITY OF EDINBURGHREBECCA CAROLINE ULBRICHT FERREIRA, UNIVERSDIDADE DE CAMPINASALINE DA COSTA LIMA MORAES, UNIVERSIDADE DE CAMPINASLETÍCIA APARECIDA DE CASTRO LARA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"RICARDO JOSÉ GONZAGA PIMENTA, UNIVERSIDADE DE CAMPINASESTELAARAUJO COSTA, UNIVEDRSIDADE FEDERAL DE SÃO PAULOLUCIANA ROSSINI PINTO, INSTITUTO AGRONÔMICO DE CAMPINASMARCOS GUIMARÃES DE ANDRADE LANDELL, INSTITUTO AGRONÔMICO DE CAMPINASMATEUS FIGUEIREDO SANTOS, CNPGCLIANA JANK, CNPGCSANZIO CARVALHO LIMA BARRIOS, CNPGCCACILDA BORGES DO VALLE, CNPGCLUCIMARA CHIARI, CNPGCANTONIO AUGUSTO FRANCO GARCIA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"REGINALDO MASSANOBU KUROSHU, UNIVERSIDADE FERDERAL DE SÃO PAULOANA CAROLINA LORENA, INSTITUTO TECNOLÓGICO DE AERONÁUTICAGREGOR GORJANC, UNIVERSITY OF EDINBURGHANETE PEREIRA DE SOUZA, UNIVERSIDADE DE CAMPINAS.AONO, A. H.FERREIRA, R. C. U.MORAES, A. da C. L.LARA, L. A. de C.PIMENTA, R. J. G.COSTA, E. A.PINTO, L. R.LANDELL, M. G. de A.SANTOS, M. F.JANK, L.BARRIOS, S. C. L.VALLE, C. B.CHIARI, L.GARCIA, A. A. F.KUROSHU, R. M.LORENA, A. C.GORJANC, G.SOUZA, A. P. de2022-12-27T15:01:28Z2022-12-27T15:01:28Z2022-12-272022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17 p.Scientific Reports, 12, article 12499, 2022.2045-2322http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365https://doi.org/10.1038/s41598-022-16417-7enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-12-27T15:01:28Zoai:www.alice.cnptia.embrapa.br:doc/1150365Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-12-27T15:01:28falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-12-27T15:01:28Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
A joint learning approach for genomic prediction in polyploid grasses. |
title |
A joint learning approach for genomic prediction in polyploid grasses. |
spellingShingle |
A joint learning approach for genomic prediction in polyploid grasses. AONO, A. H. Cana de Açúcar Gramínea Forrageira Recurso Genético Forage grasses Genetic resources Plant breeding Poaceae Polyploidy Saccharum Sugarcane |
title_short |
A joint learning approach for genomic prediction in polyploid grasses. |
title_full |
A joint learning approach for genomic prediction in polyploid grasses. |
title_fullStr |
A joint learning approach for genomic prediction in polyploid grasses. |
title_full_unstemmed |
A joint learning approach for genomic prediction in polyploid grasses. |
title_sort |
A joint learning approach for genomic prediction in polyploid grasses. |
author |
AONO, A. H. |
author_facet |
AONO, A. H. FERREIRA, R. C. U. MORAES, A. da C. L. LARA, L. A. de C. PIMENTA, R. J. G. COSTA, E. A. PINTO, L. R. LANDELL, M. G. de A. SANTOS, M. F. JANK, L. BARRIOS, S. C. L. VALLE, C. B. CHIARI, L. GARCIA, A. A. F. KUROSHU, R. M. LORENA, A. C. GORJANC, G. SOUZA, A. P. de |
author_role |
author |
author2 |
FERREIRA, R. C. U. MORAES, A. da C. L. LARA, L. A. de C. PIMENTA, R. J. G. COSTA, E. A. PINTO, L. R. LANDELL, M. G. de A. SANTOS, M. F. JANK, L. BARRIOS, S. C. L. VALLE, C. B. CHIARI, L. GARCIA, A. A. F. KUROSHU, R. M. LORENA, A. C. GORJANC, G. SOUZA, A. P. de |
author2_role |
author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
ALEXANDRE HILD AONO, UNIVERSIDADE DE CAMPINAS, UNIVERSITY OF EDINBURGH REBECCA CAROLINE ULBRICHT FERREIRA, UNIVERSDIDADE DE CAMPINAS ALINE DA COSTA LIMA MORAES, UNIVERSIDADE DE CAMPINAS LETÍCIA APARECIDA DE CASTRO LARA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" RICARDO JOSÉ GONZAGA PIMENTA, UNIVERSIDADE DE CAMPINAS ESTELAARAUJO COSTA, UNIVEDRSIDADE FEDERAL DE SÃO PAULO LUCIANA ROSSINI PINTO, INSTITUTO AGRONÔMICO DE CAMPINAS MARCOS GUIMARÃES DE ANDRADE LANDELL, INSTITUTO AGRONÔMICO DE CAMPINAS MATEUS FIGUEIREDO SANTOS, CNPGC LIANA JANK, CNPGC SANZIO CARVALHO LIMA BARRIOS, CNPGC CACILDA BORGES DO VALLE, CNPGC LUCIMARA CHIARI, CNPGC ANTONIO AUGUSTO FRANCO GARCIA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" REGINALDO MASSANOBU KUROSHU, UNIVERSIDADE FERDERAL DE SÃO PAULO ANA CAROLINA LORENA, INSTITUTO TECNOLÓGICO DE AERONÁUTICA GREGOR GORJANC, UNIVERSITY OF EDINBURGH ANETE PEREIRA DE SOUZA, UNIVERSIDADE DE CAMPINAS. |
dc.contributor.author.fl_str_mv |
AONO, A. H. FERREIRA, R. C. U. MORAES, A. da C. L. LARA, L. A. de C. PIMENTA, R. J. G. COSTA, E. A. PINTO, L. R. LANDELL, M. G. de A. SANTOS, M. F. JANK, L. BARRIOS, S. C. L. VALLE, C. B. CHIARI, L. GARCIA, A. A. F. KUROSHU, R. M. LORENA, A. C. GORJANC, G. SOUZA, A. P. de |
dc.subject.por.fl_str_mv |
Cana de Açúcar Gramínea Forrageira Recurso Genético Forage grasses Genetic resources Plant breeding Poaceae Polyploidy Saccharum Sugarcane |
topic |
Cana de Açúcar Gramínea Forrageira Recurso Genético Forage grasses Genetic resources Plant breeding Poaceae Polyploidy Saccharum Sugarcane |
description |
Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in diferent cross-validation scenarios. By combining classifcation and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-27T15:01:28Z 2022-12-27T15:01:28Z 2022-12-27 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Scientific Reports, 12, article 12499, 2022. 2045-2322 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365 https://doi.org/10.1038/s41598-022-16417-7 |
identifier_str_mv |
Scientific Reports, 12, article 12499, 2022. 2045-2322 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365 https://doi.org/10.1038/s41598-022-16417-7 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 p. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503536985243648 |