A joint learning approach for genomic prediction in polyploid grasses.

Detalhes bibliográficos
Autor(a) principal: AONO, A. H.
Data de Publicação: 2022
Outros Autores: FERREIRA, R. C. U., MORAES, A. da C. L., LARA, L. A. de C., PIMENTA, R. J. G., COSTA, E. A., PINTO, L. R., LANDELL, M. G. de A., SANTOS, M. F., JANK, L., BARRIOS, S. C. L., VALLE, C. B., CHIARI, L., GARCIA, A. A. F., KUROSHU, R. M., LORENA, A. C., GORJANC, G., SOUZA, A. P. de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365
https://doi.org/10.1038/s41598-022-16417-7
Resumo: Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in diferent cross-validation scenarios. By combining classifcation and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.
id EMBR_fb894bb8439c852b965ad8305352675b
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1150365
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling A joint learning approach for genomic prediction in polyploid grasses.Cana de AçúcarGramínea ForrageiraRecurso GenéticoForage grassesGenetic resourcesPlant breedingPoaceaePolyploidySaccharumSugarcanePoaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in diferent cross-validation scenarios. By combining classifcation and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.ALEXANDRE HILD AONO, UNIVERSIDADE DE CAMPINAS, UNIVERSITY OF EDINBURGHREBECCA CAROLINE ULBRICHT FERREIRA, UNIVERSDIDADE DE CAMPINASALINE DA COSTA LIMA MORAES, UNIVERSIDADE DE CAMPINASLETÍCIA APARECIDA DE CASTRO LARA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"RICARDO JOSÉ GONZAGA PIMENTA, UNIVERSIDADE DE CAMPINASESTELAARAUJO COSTA, UNIVEDRSIDADE FEDERAL DE SÃO PAULOLUCIANA ROSSINI PINTO, INSTITUTO AGRONÔMICO DE CAMPINASMARCOS GUIMARÃES DE ANDRADE LANDELL, INSTITUTO AGRONÔMICO DE CAMPINASMATEUS FIGUEIREDO SANTOS, CNPGCLIANA JANK, CNPGCSANZIO CARVALHO LIMA BARRIOS, CNPGCCACILDA BORGES DO VALLE, CNPGCLUCIMARA CHIARI, CNPGCANTONIO AUGUSTO FRANCO GARCIA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"REGINALDO MASSANOBU KUROSHU, UNIVERSIDADE FERDERAL DE SÃO PAULOANA CAROLINA LORENA, INSTITUTO TECNOLÓGICO DE AERONÁUTICAGREGOR GORJANC, UNIVERSITY OF EDINBURGHANETE PEREIRA DE SOUZA, UNIVERSIDADE DE CAMPINAS.AONO, A. H.FERREIRA, R. C. U.MORAES, A. da C. L.LARA, L. A. de C.PIMENTA, R. J. G.COSTA, E. A.PINTO, L. R.LANDELL, M. G. de A.SANTOS, M. F.JANK, L.BARRIOS, S. C. L.VALLE, C. B.CHIARI, L.GARCIA, A. A. F.KUROSHU, R. M.LORENA, A. C.GORJANC, G.SOUZA, A. P. de2022-12-27T15:01:28Z2022-12-27T15:01:28Z2022-12-272022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article17 p.Scientific Reports, 12, article 12499, 2022.2045-2322http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365https://doi.org/10.1038/s41598-022-16417-7enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-12-27T15:01:28Zoai:www.alice.cnptia.embrapa.br:doc/1150365Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-12-27T15:01:28falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-12-27T15:01:28Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv A joint learning approach for genomic prediction in polyploid grasses.
title A joint learning approach for genomic prediction in polyploid grasses.
spellingShingle A joint learning approach for genomic prediction in polyploid grasses.
AONO, A. H.
Cana de Açúcar
Gramínea Forrageira
Recurso Genético
Forage grasses
Genetic resources
Plant breeding
Poaceae
Polyploidy
Saccharum
Sugarcane
title_short A joint learning approach for genomic prediction in polyploid grasses.
title_full A joint learning approach for genomic prediction in polyploid grasses.
title_fullStr A joint learning approach for genomic prediction in polyploid grasses.
title_full_unstemmed A joint learning approach for genomic prediction in polyploid grasses.
title_sort A joint learning approach for genomic prediction in polyploid grasses.
author AONO, A. H.
author_facet AONO, A. H.
FERREIRA, R. C. U.
MORAES, A. da C. L.
LARA, L. A. de C.
PIMENTA, R. J. G.
COSTA, E. A.
PINTO, L. R.
LANDELL, M. G. de A.
SANTOS, M. F.
JANK, L.
BARRIOS, S. C. L.
VALLE, C. B.
CHIARI, L.
GARCIA, A. A. F.
KUROSHU, R. M.
LORENA, A. C.
GORJANC, G.
SOUZA, A. P. de
author_role author
author2 FERREIRA, R. C. U.
MORAES, A. da C. L.
LARA, L. A. de C.
PIMENTA, R. J. G.
COSTA, E. A.
PINTO, L. R.
LANDELL, M. G. de A.
SANTOS, M. F.
JANK, L.
BARRIOS, S. C. L.
VALLE, C. B.
CHIARI, L.
GARCIA, A. A. F.
KUROSHU, R. M.
LORENA, A. C.
GORJANC, G.
SOUZA, A. P. de
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv ALEXANDRE HILD AONO, UNIVERSIDADE DE CAMPINAS, UNIVERSITY OF EDINBURGH
REBECCA CAROLINE ULBRICHT FERREIRA, UNIVERSDIDADE DE CAMPINAS
ALINE DA COSTA LIMA MORAES, UNIVERSIDADE DE CAMPINAS
LETÍCIA APARECIDA DE CASTRO LARA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"
RICARDO JOSÉ GONZAGA PIMENTA, UNIVERSIDADE DE CAMPINAS
ESTELAARAUJO COSTA, UNIVEDRSIDADE FEDERAL DE SÃO PAULO
LUCIANA ROSSINI PINTO, INSTITUTO AGRONÔMICO DE CAMPINAS
MARCOS GUIMARÃES DE ANDRADE LANDELL, INSTITUTO AGRONÔMICO DE CAMPINAS
MATEUS FIGUEIREDO SANTOS, CNPGC
LIANA JANK, CNPGC
SANZIO CARVALHO LIMA BARRIOS, CNPGC
CACILDA BORGES DO VALLE, CNPGC
LUCIMARA CHIARI, CNPGC
ANTONIO AUGUSTO FRANCO GARCIA, ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ"
REGINALDO MASSANOBU KUROSHU, UNIVERSIDADE FERDERAL DE SÃO PAULO
ANA CAROLINA LORENA, INSTITUTO TECNOLÓGICO DE AERONÁUTICA
GREGOR GORJANC, UNIVERSITY OF EDINBURGH
ANETE PEREIRA DE SOUZA, UNIVERSIDADE DE CAMPINAS.
dc.contributor.author.fl_str_mv AONO, A. H.
FERREIRA, R. C. U.
MORAES, A. da C. L.
LARA, L. A. de C.
PIMENTA, R. J. G.
COSTA, E. A.
PINTO, L. R.
LANDELL, M. G. de A.
SANTOS, M. F.
JANK, L.
BARRIOS, S. C. L.
VALLE, C. B.
CHIARI, L.
GARCIA, A. A. F.
KUROSHU, R. M.
LORENA, A. C.
GORJANC, G.
SOUZA, A. P. de
dc.subject.por.fl_str_mv Cana de Açúcar
Gramínea Forrageira
Recurso Genético
Forage grasses
Genetic resources
Plant breeding
Poaceae
Polyploidy
Saccharum
Sugarcane
topic Cana de Açúcar
Gramínea Forrageira
Recurso Genético
Forage grasses
Genetic resources
Plant breeding
Poaceae
Polyploidy
Saccharum
Sugarcane
description Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in diferent cross-validation scenarios. By combining classifcation and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-27T15:01:28Z
2022-12-27T15:01:28Z
2022-12-27
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Scientific Reports, 12, article 12499, 2022.
2045-2322
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365
https://doi.org/10.1038/s41598-022-16417-7
identifier_str_mv Scientific Reports, 12, article 12499, 2022.
2045-2322
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150365
https://doi.org/10.1038/s41598-022-16417-7
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 17 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503536985243648