LAI Improved to dry forest in Semiarid of the Brazil.

Detalhes bibliográficos
Autor(a) principal: GALVÍNCIO, J. D.
Data de Publicação: 2013
Outros Autores: MOURA, M. S. B. de, SILVA, T. G. F. da, SILVA, B. B. da, NAUE, C. R.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/974172
Resumo: Savannas are globally important ecosystems of great significance to human economies. Savannas exist in water-limited regions which forces tree canopies open and heterogeneous. The open canopy structure allows grass to co-dominate in the savannas by occupying different niches in space and time. Leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) characterize vegetation canopy functioning and energy absorption capacity. LAI and FPAR are key parameters in most ecosystem productivity models and global models of climate, hydrology, biogeochemistry and ecology. Given the above, this study aimed to develop an equation of LAI calibrated by savannah in semiarid northeastern Brazil and proposed a model to better estimate the LAI for dry forest, such as the savanna (Caatinga). The model developed in this study may be used to improve the estimates of Leaf Area Index [LAI] in dry forest with NDVI. One model for savanna-specific of leaf area index (LAI) has been developed. The use of S Curve statistical methods to calibrate the leaf area index (LAI) proved to be an efficient method. The model development gives good results in most of the LAI range known for Caatinga stands in Northeast of Brazil. The Root Mean Square Error (RMSE) calculated on an independent LAI dataset was 0.10, which is about 6% of the average measured LAI. This method offers a simple and operational alternative to application of complex and computationally intensive techniques, and could be used to design other species-specific LAIs. This study reinforces the importance of developing models to better estimate the LAI in different ecosystems since there are no similarities of the LAI between dry and humid climate.
id EMBR_fcc37ea45efcef37bc03bb1593a77999
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/974172
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling LAI Improved to dry forest in Semiarid of the Brazil.LAIEcossistemas secosModelo de desenvolvimentoFieldspecSavanasNatural resourceRecurso naturalSensoriamento remotoCaatingaSavannas are globally important ecosystems of great significance to human economies. Savannas exist in water-limited regions which forces tree canopies open and heterogeneous. The open canopy structure allows grass to co-dominate in the savannas by occupying different niches in space and time. Leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) characterize vegetation canopy functioning and energy absorption capacity. LAI and FPAR are key parameters in most ecosystem productivity models and global models of climate, hydrology, biogeochemistry and ecology. Given the above, this study aimed to develop an equation of LAI calibrated by savannah in semiarid northeastern Brazil and proposed a model to better estimate the LAI for dry forest, such as the savanna (Caatinga). The model developed in this study may be used to improve the estimates of Leaf Area Index [LAI] in dry forest with NDVI. One model for savanna-specific of leaf area index (LAI) has been developed. The use of S Curve statistical methods to calibrate the leaf area index (LAI) proved to be an efficient method. The model development gives good results in most of the LAI range known for Caatinga stands in Northeast of Brazil. The Root Mean Square Error (RMSE) calculated on an independent LAI dataset was 0.10, which is about 6% of the average measured LAI. This method offers a simple and operational alternative to application of complex and computationally intensive techniques, and could be used to design other species-specific LAIs. This study reinforces the importance of developing models to better estimate the LAI in different ecosystems since there are no similarities of the LAI between dry and humid climate.JOSICLÊDA DOMICIANO GALVÍNCIO; MAGNA SOELMA BESERRA DE MOURA, CPATSA; THIERES GEORGE FREIRE DA SILVA; BERNARDO BARBOSA DA SILVA; CARINE ROSA NAUE.GALVÍNCIO, J. D.MOURA, M. S. B. deSILVA, T. G. F. daSILVA, B. B. daNAUE, C. R.2013-12-17T11:11:11Z2013-12-17T11:11:11Z2013-12-1720132013-12-20T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInternational Journal of Remote Sensing Applications, v. 3, n. 4, p. 193-202, dec. 2013.http://www.alice.cnptia.embrapa.br/alice/handle/doc/97417210.14355/ijrsa.2013.0304.04enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T00:32:48Zoai:www.alice.cnptia.embrapa.br:doc/974172Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T00:32:48falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T00:32:48Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv LAI Improved to dry forest in Semiarid of the Brazil.
title LAI Improved to dry forest in Semiarid of the Brazil.
spellingShingle LAI Improved to dry forest in Semiarid of the Brazil.
GALVÍNCIO, J. D.
LAI
Ecossistemas secos
Modelo de desenvolvimento
Fieldspec
Savanas
Natural resource
Recurso natural
Sensoriamento remoto
Caatinga
title_short LAI Improved to dry forest in Semiarid of the Brazil.
title_full LAI Improved to dry forest in Semiarid of the Brazil.
title_fullStr LAI Improved to dry forest in Semiarid of the Brazil.
title_full_unstemmed LAI Improved to dry forest in Semiarid of the Brazil.
title_sort LAI Improved to dry forest in Semiarid of the Brazil.
author GALVÍNCIO, J. D.
author_facet GALVÍNCIO, J. D.
MOURA, M. S. B. de
SILVA, T. G. F. da
SILVA, B. B. da
NAUE, C. R.
author_role author
author2 MOURA, M. S. B. de
SILVA, T. G. F. da
SILVA, B. B. da
NAUE, C. R.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv JOSICLÊDA DOMICIANO GALVÍNCIO; MAGNA SOELMA BESERRA DE MOURA, CPATSA; THIERES GEORGE FREIRE DA SILVA; BERNARDO BARBOSA DA SILVA; CARINE ROSA NAUE.
dc.contributor.author.fl_str_mv GALVÍNCIO, J. D.
MOURA, M. S. B. de
SILVA, T. G. F. da
SILVA, B. B. da
NAUE, C. R.
dc.subject.por.fl_str_mv LAI
Ecossistemas secos
Modelo de desenvolvimento
Fieldspec
Savanas
Natural resource
Recurso natural
Sensoriamento remoto
Caatinga
topic LAI
Ecossistemas secos
Modelo de desenvolvimento
Fieldspec
Savanas
Natural resource
Recurso natural
Sensoriamento remoto
Caatinga
description Savannas are globally important ecosystems of great significance to human economies. Savannas exist in water-limited regions which forces tree canopies open and heterogeneous. The open canopy structure allows grass to co-dominate in the savannas by occupying different niches in space and time. Leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) characterize vegetation canopy functioning and energy absorption capacity. LAI and FPAR are key parameters in most ecosystem productivity models and global models of climate, hydrology, biogeochemistry and ecology. Given the above, this study aimed to develop an equation of LAI calibrated by savannah in semiarid northeastern Brazil and proposed a model to better estimate the LAI for dry forest, such as the savanna (Caatinga). The model developed in this study may be used to improve the estimates of Leaf Area Index [LAI] in dry forest with NDVI. One model for savanna-specific of leaf area index (LAI) has been developed. The use of S Curve statistical methods to calibrate the leaf area index (LAI) proved to be an efficient method. The model development gives good results in most of the LAI range known for Caatinga stands in Northeast of Brazil. The Root Mean Square Error (RMSE) calculated on an independent LAI dataset was 0.10, which is about 6% of the average measured LAI. This method offers a simple and operational alternative to application of complex and computationally intensive techniques, and could be used to design other species-specific LAIs. This study reinforces the importance of developing models to better estimate the LAI in different ecosystems since there are no similarities of the LAI between dry and humid climate.
publishDate 2013
dc.date.none.fl_str_mv 2013-12-17T11:11:11Z
2013-12-17T11:11:11Z
2013-12-17
2013
2013-12-20T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv International Journal of Remote Sensing Applications, v. 3, n. 4, p. 193-202, dec. 2013.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/974172
10.14355/ijrsa.2013.0304.04
identifier_str_mv International Journal of Remote Sensing Applications, v. 3, n. 4, p. 193-202, dec. 2013.
10.14355/ijrsa.2013.0304.04
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/974172
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503384335646720