Individual tree detection and species classification of Amazonian palms using UAV images and deep learning.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124129 https://doi.org/10.1016/j.foreco.2020.118397 |
Resumo: | Information regarding the spatial distribution of palm trees in tropical forests is crucial for commercial exploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and difficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m×150 m. Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variabilityn, in the classification accuracy and assess model generalization. Our method outperformed the average producer?s accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to each other. The producer's accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 ± 5.5%, 8.6 ± 1.4% and 96.6 ± 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm species in the Amazon (E. precatoria, a.k.a, Açaí) was mapped with the highest classification accuracy. Maps of E. precatoria derived from low-cost UAV systems can support management projects and community-based forest monitoring programs in the Amazon. |
id |
EMBR_fd72d1cc27add3aabc9b7376fe9be4da |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1124129 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning.PalmeiraPalm treesMapeamentoDroneAerial surveysImagem RGBDeepLabv3+Bosques lluviososMadera tropicalTeledetecciónVehículos aéreos no tripuladosFotografía aéreaEmbrapa AcreRio Branco (AC)AcreAmazônia OcidentalWestern AmazonAmazAmazonia OccidentalFloresta TropicalEspécie NativaAçaíPopulação de PlantaBiogeografiaSensoriamento RemotoAerofotogrametriaRain forestsArecaceaeEuterpe precatoriaTropical woodBiogeographyRemote sensingUnmanned aerial vehiclesAerial photographyInformation regarding the spatial distribution of palm trees in tropical forests is crucial for commercial exploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and difficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m×150 m. Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variabilityn, in the classification accuracy and assess model generalization. Our method outperformed the average producer?s accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to each other. The producer's accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 ± 5.5%, 8.6 ± 1.4% and 96.6 ± 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm species in the Amazon (E. precatoria, a.k.a, Açaí) was mapped with the highest classification accuracy. Maps of E. precatoria derived from low-cost UAV systems can support management projects and community-based forest monitoring programs in the Amazon.Matheus Pinheiro Ferreira, Instituto Militar de Engenharia (IME); Danilo Roberti Alves de Almeida, Universidade de São Paulo (USP); DANIEL DE ALMEIDA PAPA, CPAF-AC; Juliano Baldez Silva Minervino, Universidade Federal do Acre (Ufac); Hudson Franklin Pessoa Veras, Universidade Federal do Paraná (UFPR); Arthur Formighieri, Universidade Federal do Acre (Ufac); Caio Alexandre Nascimento Santos, Bolsista Embrapa Acre; Marcio Aurélio Dantas Ferreira, Fundação de Tecnologia do Estado do Acre (Funtac); EVANDRO ORFANO FIGUEIREDO, CPAF-AC; Evandro José Linhares Ferreira, Instituto Nacional de Pesquisas da Amazônia (Inpa).FERREIRA, M. P.ALMEIDA, D. R. A. dePAPA, D. de A.MINERVINO, J. B. S.VERAS, H. F. P.FORMIGHIERI, A.SANTOS, C. A. N.FERREIRA, M. A. D.FIGUEIREDO, E. O.FERREIRA, E. J. L.2020-08-01T11:12:33Z2020-08-01T11:12:33Z2020-07-312020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleForest Ecology and Management, v. 475, n. 118397, p. 1-11, 2020.0378-1127http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124129https://doi.org/10.1016/j.foreco.2020.118397enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2020-08-01T11:12:41Zoai:www.alice.cnptia.embrapa.br:doc/1124129Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542020-08-01T11:12:41Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
title |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
spellingShingle |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. FERREIRA, M. P. Palmeira Palm trees Mapeamento Drone Aerial surveys Imagem RGB DeepLabv3+ Bosques lluviosos Madera tropical Teledetección Vehículos aéreos no tripulados Fotografía aérea Embrapa Acre Rio Branco (AC) Acre Amazônia Ocidental Western Amazon Amaz Amazonia Occidental Floresta Tropical Espécie Nativa Açaí População de Planta Biogeografia Sensoriamento Remoto Aerofotogrametria Rain forests Arecaceae Euterpe precatoria Tropical wood Biogeography Remote sensing Unmanned aerial vehicles Aerial photography |
title_short |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
title_full |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
title_fullStr |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
title_full_unstemmed |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
title_sort |
Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. |
author |
FERREIRA, M. P. |
author_facet |
FERREIRA, M. P. ALMEIDA, D. R. A. de PAPA, D. de A. MINERVINO, J. B. S. VERAS, H. F. P. FORMIGHIERI, A. SANTOS, C. A. N. FERREIRA, M. A. D. FIGUEIREDO, E. O. FERREIRA, E. J. L. |
author_role |
author |
author2 |
ALMEIDA, D. R. A. de PAPA, D. de A. MINERVINO, J. B. S. VERAS, H. F. P. FORMIGHIERI, A. SANTOS, C. A. N. FERREIRA, M. A. D. FIGUEIREDO, E. O. FERREIRA, E. J. L. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Matheus Pinheiro Ferreira, Instituto Militar de Engenharia (IME); Danilo Roberti Alves de Almeida, Universidade de São Paulo (USP); DANIEL DE ALMEIDA PAPA, CPAF-AC; Juliano Baldez Silva Minervino, Universidade Federal do Acre (Ufac); Hudson Franklin Pessoa Veras, Universidade Federal do Paraná (UFPR); Arthur Formighieri, Universidade Federal do Acre (Ufac); Caio Alexandre Nascimento Santos, Bolsista Embrapa Acre; Marcio Aurélio Dantas Ferreira, Fundação de Tecnologia do Estado do Acre (Funtac); EVANDRO ORFANO FIGUEIREDO, CPAF-AC; Evandro José Linhares Ferreira, Instituto Nacional de Pesquisas da Amazônia (Inpa). |
dc.contributor.author.fl_str_mv |
FERREIRA, M. P. ALMEIDA, D. R. A. de PAPA, D. de A. MINERVINO, J. B. S. VERAS, H. F. P. FORMIGHIERI, A. SANTOS, C. A. N. FERREIRA, M. A. D. FIGUEIREDO, E. O. FERREIRA, E. J. L. |
dc.subject.por.fl_str_mv |
Palmeira Palm trees Mapeamento Drone Aerial surveys Imagem RGB DeepLabv3+ Bosques lluviosos Madera tropical Teledetección Vehículos aéreos no tripulados Fotografía aérea Embrapa Acre Rio Branco (AC) Acre Amazônia Ocidental Western Amazon Amaz Amazonia Occidental Floresta Tropical Espécie Nativa Açaí População de Planta Biogeografia Sensoriamento Remoto Aerofotogrametria Rain forests Arecaceae Euterpe precatoria Tropical wood Biogeography Remote sensing Unmanned aerial vehicles Aerial photography |
topic |
Palmeira Palm trees Mapeamento Drone Aerial surveys Imagem RGB DeepLabv3+ Bosques lluviosos Madera tropical Teledetección Vehículos aéreos no tripulados Fotografía aérea Embrapa Acre Rio Branco (AC) Acre Amazônia Ocidental Western Amazon Amaz Amazonia Occidental Floresta Tropical Espécie Nativa Açaí População de Planta Biogeografia Sensoriamento Remoto Aerofotogrametria Rain forests Arecaceae Euterpe precatoria Tropical wood Biogeography Remote sensing Unmanned aerial vehicles Aerial photography |
description |
Information regarding the spatial distribution of palm trees in tropical forests is crucial for commercial exploitation and management. However, spatially continuous knowledge of palms occurrence is scarce and difficult to obtain with conventional approaches such as field inventories. Here, we developed a new method to map Amazonian palm species at the individual tree crown (ITC) level using RGB images acquired by a low-cost unmanned aerial vehicle (UAV). Our approach is based on morphological operations performed in the score maps of palm species derived from a fully convolutional neural network model. We first constructed a labeled dataset by dividing the study area (135 ha within an old-growth Amazon forest) into 28 plots of 250 m×150 m. Then, we manually outlined all palm trees seen in RGB images with 4 cm pixels. We identified three palm species: Attalea butyracea, Euterpe precatoria and Iriartea deltoidea. We randomly selected 22 plots (80%) for training and six plots (20%) for testing. We changed the plots for training and testing to evaluate the variabilityn, in the classification accuracy and assess model generalization. Our method outperformed the average producer?s accuracy of conventional patch-wise semantic segmentation (CSS) in 4.7%. Moreover, our method correctly identified, on average, 34.7 percentage points more ITCs than CSS, which tended to merge trees that are close to each other. The producer's accuracy of A. butyracea, E. precatoria and I. deltoidea was 78.6 ± 5.5%, 8.6 ± 1.4% and 96.6 ± 3.4%, respectively. Fortunately, one of the most exploited and commercialized palm species in the Amazon (E. precatoria, a.k.a, Açaí) was mapped with the highest classification accuracy. Maps of E. precatoria derived from low-cost UAV systems can support management projects and community-based forest monitoring programs in the Amazon. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-01T11:12:33Z 2020-08-01T11:12:33Z 2020-07-31 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Forest Ecology and Management, v. 475, n. 118397, p. 1-11, 2020. 0378-1127 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124129 https://doi.org/10.1016/j.foreco.2020.118397 |
identifier_str_mv |
Forest Ecology and Management, v. 475, n. 118397, p. 1-11, 2020. 0378-1127 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1124129 https://doi.org/10.1016/j.foreco.2020.118397 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1817695594234249216 |