Sensory analysis of Prato cheeses by generalized linear mixed models

Detalhes bibliográficos
Autor(a) principal: Alvarenga, Tatiane Carvalho
Data de Publicação: 2022
Outros Autores: Rodrigues, Jéssica Ferreira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista do Instituto de Laticínios Cândido Tostes
Texto Completo: https://www.revistadoilct.com.br/rilct/article/view/892
Resumo: Sensory analysis, an area of Food Science, is used to analyze and measure characteristics of foods, being able to evaluate the acceptance of samples. Such assessments can be performed using the 9-point numerical hedonic scale, classified as an ordinal categorized variable. To verify the significance of each effect involved in the sensorial analysis, the experiment was carried out at the Department of Food Science at the Federal University of Lavras, with two brands of Prato cheese evaluated by 100 evaluators, each male and female. For this, fixed and random effect models were used, considering the effects of cheese and sex and the interaction between both fixed effects, and the effect of the different evaluators was considered as a random effect because they are the repetitions in the experiment. It was concluded that the effects of cheese, sex, and the interaction between them and the evaluator effect were all significant in the model (AIC=1465), showing that the best model for analyzing the grades regarding the acceptance of cheeses was the generalized mixed model. Brand A had better acceptance in terms of preference (average score on the 7-point hedonic scale).
id EPAMIG-1_6644d3052a968df77bb1da17ab29e3fb
oai_identifier_str oai:oai.rilct.emnuvens.com.br:article/892
network_acronym_str EPAMIG-1
network_name_str Revista do Instituto de Laticínios Cândido Tostes
repository_id_str
spelling Sensory analysis of Prato cheeses by generalized linear mixed modelsAnálise sensorial de queijos Prato via modelo linear misto generalizadoanalysis of categorized data; proportional odds models; nested models.análise de dados categorizados; modelos de chances proporcionais. modelos encaixados.Sensory analysis, an area of Food Science, is used to analyze and measure characteristics of foods, being able to evaluate the acceptance of samples. Such assessments can be performed using the 9-point numerical hedonic scale, classified as an ordinal categorized variable. To verify the significance of each effect involved in the sensorial analysis, the experiment was carried out at the Department of Food Science at the Federal University of Lavras, with two brands of Prato cheese evaluated by 100 evaluators, each male and female. For this, fixed and random effect models were used, considering the effects of cheese and sex and the interaction between both fixed effects, and the effect of the different evaluators was considered as a random effect because they are the repetitions in the experiment. It was concluded that the effects of cheese, sex, and the interaction between them and the evaluator effect were all significant in the model (AIC=1465), showing that the best model for analyzing the grades regarding the acceptance of cheeses was the generalized mixed model. Brand A had better acceptance in terms of preference (average score on the 7-point hedonic scale).A análise sensorial, área da Ciência dos Alimentos, é empregada para analisar e medir características dos alimentos, podendo avaliar quanto à aceitação das amostras. Tais avaliações podem ser realizadas por meio da escala hedônica numérica de 9 pontos, classificada como variável categorizada ordinal. Com o objetivo de verificar a significância de cada efeito envolvido na análise sensorial, foi realizado no Departamento de Ciências dos Alimentos da Universidade Federal de Lavras, um experimento com duas marcas de queijos Prato, avaliadas por 100 avaliadores de cada sexo masculino e feminino. Para isso foi utilizado modelos de efeito fixo e aleatório, considerando os efeitos de queijo e sexo e a interação entre ambos de efeitos fixos, e o efeito dos diferentes avaliadores considerado como efeito aleatório, pelo fato de serem as repetições no experimento. Concluiu-se que os efeitos de queijo Prato, sexo e a interação entre estes e o efeito do avaliador foram todos significativos no modelo (AIC=1465), mostrando que o melhor modelo para a análise das notas quanto à aceitação dos queijos, foi o modelo misto generalizado. A marca A teve melhor aceitação quanto a preferência (nota média na escala hedônica de 7 pontos).ILCTAlvarenga, Tatiane CarvalhoRodrigues, Jéssica Ferreira2022-02-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistadoilct.com.br/rilct/article/view/89210.14295/2238-6416.v77i3.892Journal of Candido Tostes Dairy Institute; v. 77, n. 3 (2022); 144-147Revista do Instituto de Laticínios Cândido Tostes; v. 77, n. 3 (2022); 144-1472238-64160100-3674reponame:Revista do Instituto de Laticínios Cândido Tostesinstname:Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)instacron:EPAMIGporhttps://www.revistadoilct.com.br/rilct/article/view/892/588https://www.revistadoilct.com.br/rilct/article/downloadSuppFile/892/467Direitos autorais 2024 Revista do Instituto de Laticínios Cândido Tosteshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2024-02-20T18:14:58Zoai:oai.rilct.emnuvens.com.br:article/892Revistahttp://www.revistadoilct.com.br/ONGhttps://www.revistadoilct.com.br/rilct/oai||revistadoilct@epamig.br|| revistadoilct@oi.com.br2238-64160100-3674opendoar:2024-02-20T18:14:58Revista do Instituto de Laticínios Cândido Tostes - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)false
dc.title.none.fl_str_mv Sensory analysis of Prato cheeses by generalized linear mixed models
Análise sensorial de queijos Prato via modelo linear misto generalizado
title Sensory analysis of Prato cheeses by generalized linear mixed models
spellingShingle Sensory analysis of Prato cheeses by generalized linear mixed models
Alvarenga, Tatiane Carvalho
analysis of categorized data; proportional odds models; nested models.
análise de dados categorizados; modelos de chances proporcionais. modelos encaixados.
title_short Sensory analysis of Prato cheeses by generalized linear mixed models
title_full Sensory analysis of Prato cheeses by generalized linear mixed models
title_fullStr Sensory analysis of Prato cheeses by generalized linear mixed models
title_full_unstemmed Sensory analysis of Prato cheeses by generalized linear mixed models
title_sort Sensory analysis of Prato cheeses by generalized linear mixed models
author Alvarenga, Tatiane Carvalho
author_facet Alvarenga, Tatiane Carvalho
Rodrigues, Jéssica Ferreira
author_role author
author2 Rodrigues, Jéssica Ferreira
author2_role author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Alvarenga, Tatiane Carvalho
Rodrigues, Jéssica Ferreira
dc.subject.none.fl_str_mv

dc.subject.por.fl_str_mv analysis of categorized data; proportional odds models; nested models.
análise de dados categorizados; modelos de chances proporcionais. modelos encaixados.
topic analysis of categorized data; proportional odds models; nested models.
análise de dados categorizados; modelos de chances proporcionais. modelos encaixados.
description Sensory analysis, an area of Food Science, is used to analyze and measure characteristics of foods, being able to evaluate the acceptance of samples. Such assessments can be performed using the 9-point numerical hedonic scale, classified as an ordinal categorized variable. To verify the significance of each effect involved in the sensorial analysis, the experiment was carried out at the Department of Food Science at the Federal University of Lavras, with two brands of Prato cheese evaluated by 100 evaluators, each male and female. For this, fixed and random effect models were used, considering the effects of cheese and sex and the interaction between both fixed effects, and the effect of the different evaluators was considered as a random effect because they are the repetitions in the experiment. It was concluded that the effects of cheese, sex, and the interaction between them and the evaluator effect were all significant in the model (AIC=1465), showing that the best model for analyzing the grades regarding the acceptance of cheeses was the generalized mixed model. Brand A had better acceptance in terms of preference (average score on the 7-point hedonic scale).
publishDate 2022
dc.date.none.fl_str_mv 2022-02-20
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.revistadoilct.com.br/rilct/article/view/892
10.14295/2238-6416.v77i3.892
url https://www.revistadoilct.com.br/rilct/article/view/892
identifier_str_mv 10.14295/2238-6416.v77i3.892
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://www.revistadoilct.com.br/rilct/article/view/892/588
https://www.revistadoilct.com.br/rilct/article/downloadSuppFile/892/467
dc.rights.driver.fl_str_mv Direitos autorais 2024 Revista do Instituto de Laticínios Cândido Tostes
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2024 Revista do Instituto de Laticínios Cândido Tostes
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ILCT
publisher.none.fl_str_mv ILCT
dc.source.none.fl_str_mv Journal of Candido Tostes Dairy Institute; v. 77, n. 3 (2022); 144-147
Revista do Instituto de Laticínios Cândido Tostes; v. 77, n. 3 (2022); 144-147
2238-6416
0100-3674
reponame:Revista do Instituto de Laticínios Cândido Tostes
instname:Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)
instacron:EPAMIG
instname_str Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)
instacron_str EPAMIG
institution EPAMIG
reponame_str Revista do Instituto de Laticínios Cândido Tostes
collection Revista do Instituto de Laticínios Cândido Tostes
repository.name.fl_str_mv Revista do Instituto de Laticínios Cândido Tostes - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)
repository.mail.fl_str_mv ||revistadoilct@epamig.br|| revistadoilct@oi.com.br
_version_ 1809738131741605888