Applying artificial neural networks as a test to detect milk fraud by whey addition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista do Instituto de Laticínios Cândido Tostes |
Texto Completo: | https://www.revistadoilct.com.br/rilct/article/view/353 |
Resumo: | This study aimed to employ Artificial Neural Networks to classify milk samples from routine analysis of a dairy company in order to identify adulteration by whey addition. The samples were prepared by mixing the milk with different whey concentrations (0, 1, 5, 10, and 20%), which were then analyzed for temperature, fat content, solids-non-fat, bulk density, protein, lactose, minerals, freezing point, conductivity, and pH, for a total of 167 assays. Out of these, 101 were used to train the network, 33 for validation, and 33 to test the artificial neural network. The best classification was obtained using a radial basis function neural network. k-means algorithm was used to obtain the network center, k-nearest was used to define the receptive fields, and the pseudo-inverse method was used to define the weights of the output layer. The best result was found with a network with 10 neurons in the input layer, 40 neurons in the hidden layer, and two neurons in the output layer, achieving over 95% accuracy in classification. The classification methodology using artificial neural networks has strong potential to be applied in interpreting data from routine analysis in dairy companies in order to classify milk adulterated with whey and, later, confirm the result using official methodologies. |
id |
EPAMIG-1_d63e2b7442f1525aa24bbe9c5f64d270 |
---|---|
oai_identifier_str |
oai:oai.rilct.emnuvens.com.br:article/353 |
network_acronym_str |
EPAMIG-1 |
network_name_str |
Revista do Instituto de Laticínios Cândido Tostes |
repository_id_str |
|
spelling |
Applying artificial neural networks as a test to detect milk fraud by whey additionAPLICAÇÃO DE REDES NEURAIS ARTIFICIAIS COMO TESTE DE DETECÇÃO DE FRAUDE DE LEITE POR ADIÇÃO DE SORO DE QUEIJOclassification; physicochemical analysis; RBFControle de Qualidade; Engenharia.classificação; análise físico-química; RBF.This study aimed to employ Artificial Neural Networks to classify milk samples from routine analysis of a dairy company in order to identify adulteration by whey addition. The samples were prepared by mixing the milk with different whey concentrations (0, 1, 5, 10, and 20%), which were then analyzed for temperature, fat content, solids-non-fat, bulk density, protein, lactose, minerals, freezing point, conductivity, and pH, for a total of 167 assays. Out of these, 101 were used to train the network, 33 for validation, and 33 to test the artificial neural network. The best classification was obtained using a radial basis function neural network. k-means algorithm was used to obtain the network center, k-nearest was used to define the receptive fields, and the pseudo-inverse method was used to define the weights of the output layer. The best result was found with a network with 10 neurons in the input layer, 40 neurons in the hidden layer, and two neurons in the output layer, achieving over 95% accuracy in classification. The classification methodology using artificial neural networks has strong potential to be applied in interpreting data from routine analysis in dairy companies in order to classify milk adulterated with whey and, later, confirm the result using official methodologies.Esse trabalho foi realizado com o objetivo de empregar Redes Neurais Artificiais para classificar amostras de leite, a partir de análises de rotina de um laticínio, em amostras de leite adulteradas ou não, quanto à adição de soro de queijo. As amostras foram preparadas através da mistura do leite com diferentes concentrações de soro (0, 1, 5, 10 e 20%) sendo analisadas quanto a temperatura, teor de gordura, extrato seco desengordurado, densidade, proteína, lactose, sais minerais, ponto de congelamento, condutividade e pH, totalizando 167 ensaios. Desses 167 ensaios, 101 foram usados para treinamento da rede, 33 para validação e outros 33 para testar a rede neural artificial. A melhor rede de classificação foi uma rede neural de função de base radial. Para obter os centros da rede foi usado o algoritmo k-means, para definir a largura dos campos receptivos o k-nearest e os pesos da camada de saída foram definidos usando o método da pseudo-inversa. A rede com melhor resultado apresentou 10 neurônios na camada de entrada, 40 neurônios na camada oculta e dois na camada de saída, sendo possível obter mais de 95% de acertos na classificação. A metodologia de classificação por Redes Neurais Artificiais apresenta um grande potencial de aplicação na interpretação de dados de análises de rotina nos laticínios para classificação do leite em adulterado por soro de queijo e, posteriormente, confirmação do resultado por metodologia oficial.ILCTIFSULDEMINAS-Câmpus InconfidentesCNPqValente, Gerson de Freitas SilvaGuimarães, Daiana CristinaGaspardi, Ana Laís AndradeOliveira, Lara de Andrade2014-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://www.revistadoilct.com.br/rilct/article/view/35310.14295/2238-6416.v69i6.353Journal of Candido Tostes Dairy Institute; v. 69, n. 6 (2014); 425-432Revista do Instituto de Laticínios Cândido Tostes; v. 69, n. 6 (2014); 425-4322238-64160100-3674reponame:Revista do Instituto de Laticínios Cândido Tostesinstname:Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)instacron:EPAMIGporhttps://www.revistadoilct.com.br/rilct/article/view/353/344Direitos autorais 2015 Revista do Instituto de Laticínios Cândido Tosteshttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess2015-03-09T18:09:06Zoai:oai.rilct.emnuvens.com.br:article/353Revistahttp://www.revistadoilct.com.br/ONGhttps://www.revistadoilct.com.br/rilct/oai||revistadoilct@epamig.br|| revistadoilct@oi.com.br2238-64160100-3674opendoar:2015-03-09T18:09:06Revista do Instituto de Laticínios Cândido Tostes - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)false |
dc.title.none.fl_str_mv |
Applying artificial neural networks as a test to detect milk fraud by whey addition APLICAÇÃO DE REDES NEURAIS ARTIFICIAIS COMO TESTE DE DETECÇÃO DE FRAUDE DE LEITE POR ADIÇÃO DE SORO DE QUEIJO |
title |
Applying artificial neural networks as a test to detect milk fraud by whey addition |
spellingShingle |
Applying artificial neural networks as a test to detect milk fraud by whey addition Valente, Gerson de Freitas Silva classification; physicochemical analysis; RBF Controle de Qualidade; Engenharia. classificação; análise físico-química; RBF. |
title_short |
Applying artificial neural networks as a test to detect milk fraud by whey addition |
title_full |
Applying artificial neural networks as a test to detect milk fraud by whey addition |
title_fullStr |
Applying artificial neural networks as a test to detect milk fraud by whey addition |
title_full_unstemmed |
Applying artificial neural networks as a test to detect milk fraud by whey addition |
title_sort |
Applying artificial neural networks as a test to detect milk fraud by whey addition |
author |
Valente, Gerson de Freitas Silva |
author_facet |
Valente, Gerson de Freitas Silva Guimarães, Daiana Cristina Gaspardi, Ana Laís Andrade Oliveira, Lara de Andrade |
author_role |
author |
author2 |
Guimarães, Daiana Cristina Gaspardi, Ana Laís Andrade Oliveira, Lara de Andrade |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
IFSULDEMINAS-Câmpus Inconfidentes CNPq |
dc.contributor.author.fl_str_mv |
Valente, Gerson de Freitas Silva Guimarães, Daiana Cristina Gaspardi, Ana Laís Andrade Oliveira, Lara de Andrade |
dc.subject.none.fl_str_mv |
|
dc.subject.por.fl_str_mv |
classification; physicochemical analysis; RBF Controle de Qualidade; Engenharia. classificação; análise físico-química; RBF. |
topic |
classification; physicochemical analysis; RBF Controle de Qualidade; Engenharia. classificação; análise físico-química; RBF. |
description |
This study aimed to employ Artificial Neural Networks to classify milk samples from routine analysis of a dairy company in order to identify adulteration by whey addition. The samples were prepared by mixing the milk with different whey concentrations (0, 1, 5, 10, and 20%), which were then analyzed for temperature, fat content, solids-non-fat, bulk density, protein, lactose, minerals, freezing point, conductivity, and pH, for a total of 167 assays. Out of these, 101 were used to train the network, 33 for validation, and 33 to test the artificial neural network. The best classification was obtained using a radial basis function neural network. k-means algorithm was used to obtain the network center, k-nearest was used to define the receptive fields, and the pseudo-inverse method was used to define the weights of the output layer. The best result was found with a network with 10 neurons in the input layer, 40 neurons in the hidden layer, and two neurons in the output layer, achieving over 95% accuracy in classification. The classification methodology using artificial neural networks has strong potential to be applied in interpreting data from routine analysis in dairy companies in order to classify milk adulterated with whey and, later, confirm the result using official methodologies. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-02 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.revistadoilct.com.br/rilct/article/view/353 10.14295/2238-6416.v69i6.353 |
url |
https://www.revistadoilct.com.br/rilct/article/view/353 |
identifier_str_mv |
10.14295/2238-6416.v69i6.353 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://www.revistadoilct.com.br/rilct/article/view/353/344 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2015 Revista do Instituto de Laticínios Cândido Tostes http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2015 Revista do Instituto de Laticínios Cândido Tostes http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ILCT |
publisher.none.fl_str_mv |
ILCT |
dc.source.none.fl_str_mv |
Journal of Candido Tostes Dairy Institute; v. 69, n. 6 (2014); 425-432 Revista do Instituto de Laticínios Cândido Tostes; v. 69, n. 6 (2014); 425-432 2238-6416 0100-3674 reponame:Revista do Instituto de Laticínios Cândido Tostes instname:Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) instacron:EPAMIG |
instname_str |
Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) |
instacron_str |
EPAMIG |
institution |
EPAMIG |
reponame_str |
Revista do Instituto de Laticínios Cândido Tostes |
collection |
Revista do Instituto de Laticínios Cândido Tostes |
repository.name.fl_str_mv |
Revista do Instituto de Laticínios Cândido Tostes - Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG) |
repository.mail.fl_str_mv |
||revistadoilct@epamig.br|| revistadoilct@oi.com.br |
_version_ |
1809738130911133696 |