Integration of different-quality data in short-term mining planning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | REM. Revista Escola de Minas (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221 |
Resumo: | AbstractDecisions, from mineral exploration to mining operations, are based on grade block models obtained from samples. This study evaluates the impact of using imprecise data in short-term planning. The exhaustive Walker Lake dataset is used and is considered as the source for obtaining the true grades. Initially, samples are obtained from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 5 × 5 m (short-term geological data) in different scenarios. To combine these different types of data, two methodologies are investigated: cokriging and ordinary kriging. Both types of data are used to estimate blocks with the two methodologies. The grade tonnage curves and swath plots are used to compare the results against the true block grade distribution. In addition, the block misclassification is evaluated. The results show that standardized ordinary cokriging is a better methodology for imprecise and biased data and produces estimates closer to the true grade block distribution, reducing block misclassification. |
id |
ESCOLADEMINAS-1_84ed595690b639e423f90b12f8b4137e |
---|---|
oai_identifier_str |
oai:scielo:S0370-44672015000200221 |
network_acronym_str |
ESCOLADEMINAS-1 |
network_name_str |
REM. Revista Escola de Minas (Online) |
repository_id_str |
|
spelling |
Integration of different-quality data in short-term mining planningbiased samplesgrade estimateskrigingcokrigingAbstractDecisions, from mineral exploration to mining operations, are based on grade block models obtained from samples. This study evaluates the impact of using imprecise data in short-term planning. The exhaustive Walker Lake dataset is used and is considered as the source for obtaining the true grades. Initially, samples are obtained from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 5 × 5 m (short-term geological data) in different scenarios. To combine these different types of data, two methodologies are investigated: cokriging and ordinary kriging. Both types of data are used to estimate blocks with the two methodologies. The grade tonnage curves and swath plots are used to compare the results against the true block grade distribution. In addition, the block misclassification is evaluated. The results show that standardized ordinary cokriging is a better methodology for imprecise and biased data and produces estimates closer to the true grade block distribution, reducing block misclassification.Escola de Minas2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221Rem: Revista Escola de Minas v.68 n.2 2015reponame:REM. Revista Escola de Minas (Online)instname:Escola de Minasinstacron:ESCOLA DE MINAS10.1590/0370-44672015680212info:eu-repo/semantics/openAccessAraújo,Cristina PaixãoCosta,João Felipe Coimbra Leiteeng2015-10-09T00:00:00Zoai:scielo:S0370-44672015000200221Revistahttp://www.scielo.br/remhttps://old.scielo.br/oai/scielo-oai.phpeditor@rem.com.br1807-03530370-4467opendoar:2015-10-09T00:00REM. Revista Escola de Minas (Online) - Escola de Minasfalse |
dc.title.none.fl_str_mv |
Integration of different-quality data in short-term mining planning |
title |
Integration of different-quality data in short-term mining planning |
spellingShingle |
Integration of different-quality data in short-term mining planning Araújo,Cristina Paixão biased samples grade estimates kriging cokriging |
title_short |
Integration of different-quality data in short-term mining planning |
title_full |
Integration of different-quality data in short-term mining planning |
title_fullStr |
Integration of different-quality data in short-term mining planning |
title_full_unstemmed |
Integration of different-quality data in short-term mining planning |
title_sort |
Integration of different-quality data in short-term mining planning |
author |
Araújo,Cristina Paixão |
author_facet |
Araújo,Cristina Paixão Costa,João Felipe Coimbra Leite |
author_role |
author |
author2 |
Costa,João Felipe Coimbra Leite |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Araújo,Cristina Paixão Costa,João Felipe Coimbra Leite |
dc.subject.por.fl_str_mv |
biased samples grade estimates kriging cokriging |
topic |
biased samples grade estimates kriging cokriging |
description |
AbstractDecisions, from mineral exploration to mining operations, are based on grade block models obtained from samples. This study evaluates the impact of using imprecise data in short-term planning. The exhaustive Walker Lake dataset is used and is considered as the source for obtaining the true grades. Initially, samples are obtained from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 5 × 5 m (short-term geological data) in different scenarios. To combine these different types of data, two methodologies are investigated: cokriging and ordinary kriging. Both types of data are used to estimate blocks with the two methodologies. The grade tonnage curves and swath plots are used to compare the results against the true block grade distribution. In addition, the block misclassification is evaluated. The results show that standardized ordinary cokriging is a better methodology for imprecise and biased data and produces estimates closer to the true grade block distribution, reducing block misclassification. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0370-44672015680212 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola de Minas |
publisher.none.fl_str_mv |
Escola de Minas |
dc.source.none.fl_str_mv |
Rem: Revista Escola de Minas v.68 n.2 2015 reponame:REM. Revista Escola de Minas (Online) instname:Escola de Minas instacron:ESCOLA DE MINAS |
instname_str |
Escola de Minas |
instacron_str |
ESCOLA DE MINAS |
institution |
ESCOLA DE MINAS |
reponame_str |
REM. Revista Escola de Minas (Online) |
collection |
REM. Revista Escola de Minas (Online) |
repository.name.fl_str_mv |
REM. Revista Escola de Minas (Online) - Escola de Minas |
repository.mail.fl_str_mv |
editor@rem.com.br |
_version_ |
1754122199013261312 |