Integration of different-quality data in short-term mining planning

Detalhes bibliográficos
Autor(a) principal: Araújo,Cristina Paixão
Data de Publicação: 2015
Outros Autores: Costa,João Felipe Coimbra Leite
Tipo de documento: Artigo
Idioma: eng
Título da fonte: REM. Revista Escola de Minas (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221
Resumo: AbstractDecisions, from mineral exploration to mining operations, are based on grade block models obtained from samples. This study evaluates the impact of using imprecise data in short-term planning. The exhaustive Walker Lake dataset is used and is considered as the source for obtaining the true grades. Initially, samples are obtained from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 5 × 5 m (short-term geological data) in different scenarios. To combine these different types of data, two methodologies are investigated: cokriging and ordinary kriging. Both types of data are used to estimate blocks with the two methodologies. The grade tonnage curves and swath plots are used to compare the results against the true block grade distribution. In addition, the block misclassification is evaluated. The results show that standardized ordinary cokriging is a better methodology for imprecise and biased data and produces estimates closer to the true grade block distribution, reducing block misclassification.
id ESCOLADEMINAS-1_84ed595690b639e423f90b12f8b4137e
oai_identifier_str oai:scielo:S0370-44672015000200221
network_acronym_str ESCOLADEMINAS-1
network_name_str REM. Revista Escola de Minas (Online)
repository_id_str
spelling Integration of different-quality data in short-term mining planningbiased samplesgrade estimateskrigingcokrigingAbstractDecisions, from mineral exploration to mining operations, are based on grade block models obtained from samples. This study evaluates the impact of using imprecise data in short-term planning. The exhaustive Walker Lake dataset is used and is considered as the source for obtaining the true grades. Initially, samples are obtained from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 5 × 5 m (short-term geological data) in different scenarios. To combine these different types of data, two methodologies are investigated: cokriging and ordinary kriging. Both types of data are used to estimate blocks with the two methodologies. The grade tonnage curves and swath plots are used to compare the results against the true block grade distribution. In addition, the block misclassification is evaluated. The results show that standardized ordinary cokriging is a better methodology for imprecise and biased data and produces estimates closer to the true grade block distribution, reducing block misclassification.Escola de Minas2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221Rem: Revista Escola de Minas v.68 n.2 2015reponame:REM. Revista Escola de Minas (Online)instname:Escola de Minasinstacron:ESCOLA DE MINAS10.1590/0370-44672015680212info:eu-repo/semantics/openAccessAraújo,Cristina PaixãoCosta,João Felipe Coimbra Leiteeng2015-10-09T00:00:00Zoai:scielo:S0370-44672015000200221Revistahttp://www.scielo.br/remhttps://old.scielo.br/oai/scielo-oai.phpeditor@rem.com.br1807-03530370-4467opendoar:2015-10-09T00:00REM. Revista Escola de Minas (Online) - Escola de Minasfalse
dc.title.none.fl_str_mv Integration of different-quality data in short-term mining planning
title Integration of different-quality data in short-term mining planning
spellingShingle Integration of different-quality data in short-term mining planning
Araújo,Cristina Paixão
biased samples
grade estimates
kriging
cokriging
title_short Integration of different-quality data in short-term mining planning
title_full Integration of different-quality data in short-term mining planning
title_fullStr Integration of different-quality data in short-term mining planning
title_full_unstemmed Integration of different-quality data in short-term mining planning
title_sort Integration of different-quality data in short-term mining planning
author Araújo,Cristina Paixão
author_facet Araújo,Cristina Paixão
Costa,João Felipe Coimbra Leite
author_role author
author2 Costa,João Felipe Coimbra Leite
author2_role author
dc.contributor.author.fl_str_mv Araújo,Cristina Paixão
Costa,João Felipe Coimbra Leite
dc.subject.por.fl_str_mv biased samples
grade estimates
kriging
cokriging
topic biased samples
grade estimates
kriging
cokriging
description AbstractDecisions, from mineral exploration to mining operations, are based on grade block models obtained from samples. This study evaluates the impact of using imprecise data in short-term planning. The exhaustive Walker Lake dataset is used and is considered as the source for obtaining the true grades. Initially, samples are obtained from the exhaustive dataset at regularly spaced grids of 20 × 20 m and 5 × 5 m. A relative error (imprecision) of ±25% and a 10% bias are added to the data spaced at 5 × 5 m (short-term geological data) in different scenarios. To combine these different types of data, two methodologies are investigated: cokriging and ordinary kriging. Both types of data are used to estimate blocks with the two methodologies. The grade tonnage curves and swath plots are used to compare the results against the true block grade distribution. In addition, the block misclassification is evaluated. The results show that standardized ordinary cokriging is a better methodology for imprecise and biased data and produces estimates closer to the true grade block distribution, reducing block misclassification.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0370-44672015000200221
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0370-44672015680212
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola de Minas
publisher.none.fl_str_mv Escola de Minas
dc.source.none.fl_str_mv Rem: Revista Escola de Minas v.68 n.2 2015
reponame:REM. Revista Escola de Minas (Online)
instname:Escola de Minas
instacron:ESCOLA DE MINAS
instname_str Escola de Minas
instacron_str ESCOLA DE MINAS
institution ESCOLA DE MINAS
reponame_str REM. Revista Escola de Minas (Online)
collection REM. Revista Escola de Minas (Online)
repository.name.fl_str_mv REM. Revista Escola de Minas (Online) - Escola de Minas
repository.mail.fl_str_mv editor@rem.com.br
_version_ 1754122199013261312