Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da ESPM |
Texto Completo: | http://tede2.espm.br/handle/tede/507 |
Resumo: | In a world transformed by the sharing economy and rapid technological evolution, one of the most affected markets is urban mobility, crowdsourcing transportation companies like Uber, 99, Lifty and others have changed the way people get around, what comes impacting the auto industry and the cities where the service is offered. In addition to these impacts, this new way of getting around produces a new study artifact, the digital trail of displacement, which can be understood from the perspective of Big Data, for example, when getting around the city through a shared ride service, the user and driver adjust the fare via the application, installed on their smartphones, where all the digital trace of the service provided is collected, such as origin, destination, route and other data. A theme that has been of interest to geographers, urban planners and sociologists over the years is that of accessibility, a measure that reflects the spatial development that consists of the transport network and the distribution of opportunities, reflected by the uses and occupation of urban land. This measure is also used by companies in different segments to plan investments and support decision making, such as some retail segments that use the distribution of public transport to plan the positioning of their stores. Therefore, this study seeks to relate the approach of Big Data with the concept of accessibility from the new data produced in the provision of services by transportation crowdsourcing companies. An exploratory study of the correlation of the tariff and the waiting time for the service and dynamic tariff is proposed, with socioeconomic variables from the city of São Paulo with the intention of exploring the use of these measures as an accessibility proxy. For this, the study proposes the creation of a database with the average of the estimated tariffs and the waiting time of the service, added to a set of socioeconomic variables and transport infrastructure. From this base it is proposed to develop MLR linear regression models, using the stepwise method selecting the most significant variables in the model and checking if there is a spatial pattern of the variables through the Moran I test, ending with a SAR autoregressive spatial model. All the models developed showed variables with a high degree of significance, such as: percentage of non-whites, amount of bushes and population density, in addition to Rsquare in the range of 0,80. |
id |
ESPM_7674bb5379cd2186b55b75e9a394c20e |
---|---|
oai_identifier_str |
oai:tede2.espm.br:tede/507 |
network_acronym_str |
ESPM |
network_name_str |
Biblioteca Digital de Teses e Dissertações da ESPM |
repository_id_str |
|
spelling |
Strehlau, SuzanePonchio, Mateus CanniattiFrancisco, Eduardo de Rezende37434227869http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8111368Y0&tokenCaptchar=03AGdBq241Mr1-Pu0mP0oxwzS7Vj3xF78Q50zY6msHRwFCiwreT4jawQdZQfsfwY5Z-9bE5xEjQdkTJ7QON1cdSLRFWdTTdsHG3btfH7Ul3UPFueuyiaAz9ABq863HZHw0fpRbILM6oKVOwQkFN1rNySd0QU0X099jzqK8H8_JpRMa2uOoussonW3v2JUUpvlYIKQqTTZbboI4f4IBTGF-ONCX8m1ujGFGHRwSbnugmwKCSYVNxfsX7E-sgO36qS4wrwYG-SVjTDE8du8UCMBY4mG6rIZ5X-hE1sDX_7WqMqKYItAXqeYy8hl3L2KKCfh-RBl75KE77SRqn4lSk76m42_F-RBlzQ-cqOmpzgUwExEgvrZdcmy0QKhtQGkwNjvrWzyR1P4h89ze_1WOTf3VsOwTYQlrMufUO3-fEuMVilR5vkxoDR3HjzwgfANrMMf4O487ZGxjFUEfCCsZOeEy9NMBDDXSQR6oyQInsardi, André2020-11-05T15:19:36Z2020-04-23Insardi, André. Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber. 2020. [50 f.]. Dissertação ( Programa de Mestrado Profissional em Comportamento do Consumidor) - Escola Superior de Propaganda e Marketing, [São Paulo] .http://tede2.espm.br/handle/tede/507In a world transformed by the sharing economy and rapid technological evolution, one of the most affected markets is urban mobility, crowdsourcing transportation companies like Uber, 99, Lifty and others have changed the way people get around, what comes impacting the auto industry and the cities where the service is offered. In addition to these impacts, this new way of getting around produces a new study artifact, the digital trail of displacement, which can be understood from the perspective of Big Data, for example, when getting around the city through a shared ride service, the user and driver adjust the fare via the application, installed on their smartphones, where all the digital trace of the service provided is collected, such as origin, destination, route and other data. A theme that has been of interest to geographers, urban planners and sociologists over the years is that of accessibility, a measure that reflects the spatial development that consists of the transport network and the distribution of opportunities, reflected by the uses and occupation of urban land. This measure is also used by companies in different segments to plan investments and support decision making, such as some retail segments that use the distribution of public transport to plan the positioning of their stores. Therefore, this study seeks to relate the approach of Big Data with the concept of accessibility from the new data produced in the provision of services by transportation crowdsourcing companies. An exploratory study of the correlation of the tariff and the waiting time for the service and dynamic tariff is proposed, with socioeconomic variables from the city of São Paulo with the intention of exploring the use of these measures as an accessibility proxy. For this, the study proposes the creation of a database with the average of the estimated tariffs and the waiting time of the service, added to a set of socioeconomic variables and transport infrastructure. From this base it is proposed to develop MLR linear regression models, using the stepwise method selecting the most significant variables in the model and checking if there is a spatial pattern of the variables through the Moran I test, ending with a SAR autoregressive spatial model. All the models developed showed variables with a high degree of significance, such as: percentage of non-whites, amount of bushes and population density, in addition to Rsquare in the range of 0,80.Em um mundo transformado pela economia do compartilhamento e rápida evolução tecnológica, um dos mercados mais atingidos é o da mobilidade urbana. Empresas de crowdsourcing de transporte, como Uber, 99 e Lifty, entre outras, mudaram a forma de as pessoas se locomoverem, o que vem causando impacto na indústria automobilística e nas cidades onde o serviço é ofertado. Além desses impactos, a nova forma de locomoção produz um novo artefato de estudo, o rastro digital do deslocamento, que pode ser entendido sob a ótica do Big Data - por exemplo, ao se locomover na cidade por meio de um serviço de carona compartilhada, usuário e motorista realizam o acerto da tarifa via aplicativo, instalado em seus smartphones, e ali é registrado todo o rastro digital do serviço prestado, como origem, destino, percurso, dentre outros dados. Ao lado disso, um tema que vem sendo de interesse de geógrafos, urbanistas e sociólogos, ao longo dos anos, é o da acessibilidade, medida que reflete o desenvolvimento espacial constituído da rede de transporte e da distribuição de oportunidades dos usos e ocupação do solo urbano. Esta medida também é utilizada por empresas de diferentes segmentos, para planejar investimentos e apoiar a tomada de decisão, como alguns segmentos do varejo que utilizam a distribuição do transporte público para planejar o posicionamento das suas lojas. Sendo assim, este estudo busca relacionar a abordagem do Big Data com o conceito de acessibilidade, a partir dos novos dados produzidos na prestação de serviço de empresas de crowdsourcing de transporte. Para isso, propõe-se um estudo exploratório da correlação da tarifa e do tempo de espera do serviço e da tarifa dinâmica, com variáveis socioeconômicas da cidade de São Paulo, com o objetivo de explorar o uso dessas medidas como um proxy de acessibilidade. Assim, o estudo propõe a criação de uma base de dados, com a média das tarifas estimadas e do tempo de espera do serviço, agregado a um conjunto de variáveis socioeconômicas e de infraestrutura de transporte. A partir dessa base, serão elaborados Modelos de Regressão Linear - MLR, utilizando-se o método stepwise, selecionando-se as variáveis mais significativas do modelo, verificando se existe padrão espacial das variáveis, por meio do teste I de Moran, e finalizando com um modelo espacial autorregressivo SAR. Todos os modelos desenvolvidos apresentaram variáveis com alto grau de significância como: percentual de não brancos, quantidade de linhas de ônibus e densidade populacional, além de R² na casa de 0,80.Submitted by Adriana Alves Rodrigues (aalves@espm.br) on 2020-11-05T15:18:11Z No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5)Approved for entry into archive by Adriana Alves Rodrigues (aalves@espm.br) on 2020-11-05T15:19:14Z (GMT) No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5)Approved for entry into archive by Adriana Alves Rodrigues (aalves@espm.br) on 2020-11-05T15:19:24Z (GMT) No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5)Made available in DSpace on 2020-11-05T15:19:36Z (GMT). No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5) Previous issue date: 2020-04-23application/pdfhttp://tede2.espm.br/retrieve/1697/Andr%c3%a9%20Insardi.pdf.jpgporEscola Superior de Propaganda e MarketingPrograma de Mestrado Profissional em Comportamento do ConsumidorESPMBrasilESPM::Pós-Graduação Stricto Sensucomportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacialconsumer behavior; Big Data; accessibility; urban mobility; spatial statisticsCIENCIAS SOCIAIS APLICADAS::ADMINISTRACAOMedindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da UberMeasuring accessibility: a Big Data perspective on Uber service wait times and feesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5003969050085565866500500600-44551937530918523288024035432632778221info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da ESPMinstname:Escola Superior de Propaganda e Marketing (ESPM)instacron:ESPMTHUMBNAILAndré Insardi.pdf.jpgAndré Insardi.pdf.jpgimage/jpeg5642http://tede2.espm.br:8080/tede/bitstream/tede/507/4/Andr%C3%A9+Insardi.pdf.jpg3cf95799d32252656b66725a54ea7569MD54TEXTAndré Insardi.pdf.txtAndré Insardi.pdf.txttext/plain91606http://tede2.espm.br:8080/tede/bitstream/tede/507/3/Andr%C3%A9+Insardi.pdf.txt5d21c3b9c776ab3fc3050d0135a56a61MD53ORIGINALAndré Insardi.pdfAndré Insardi.pdfapplication/pdf2454383http://tede2.espm.br:8080/tede/bitstream/tede/507/2/Andr%C3%A9+Insardi.pdfc1bc977cdf3529be436778aa8673c5f8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81912http://tede2.espm.br:8080/tede/bitstream/tede/507/1/license.txt652c58b294e08ded719d10bdbc42f8ceMD51tede/5072020-11-06 02:00:22.9oai:tede2.espm.br:tede/507TElDRU7Dh0EgREUgRElTVFJJQlVJw4dBTyBOw4NPLUVYQ0xVU0lWQQpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIEVTUE0gbyBkaXJlaXRvIG5vLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgRVNQTSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBFU1BNIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIG7Do28gaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgRVNQTSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPTyBTRUpBIEEgRVNQTSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIEVTUE0gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyAocykgbm9tZSAocykgZG8gKHMpIGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcmEgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede2.espm.br/http://tede2.espm.br/oai/requestacervodigital@espm.br||hribeiro@espm.bropendoar:2020-11-06T04:00:22Biblioteca Digital de Teses e Dissertações da ESPM - Escola Superior de Propaganda e Marketing (ESPM)false |
dc.title.por.fl_str_mv |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
dc.title.alternative.eng.fl_str_mv |
Measuring accessibility: a Big Data perspective on Uber service wait times and fees |
title |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
spellingShingle |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber Insardi, André comportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacial consumer behavior; Big Data; accessibility; urban mobility; spatial statistics CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
title_short |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
title_full |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
title_fullStr |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
title_full_unstemmed |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
title_sort |
Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber |
author |
Insardi, André |
author_facet |
Insardi, André |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Strehlau, Suzane |
dc.contributor.referee1.fl_str_mv |
Ponchio, Mateus Canniatti |
dc.contributor.referee2.fl_str_mv |
Francisco, Eduardo de Rezende |
dc.contributor.authorID.fl_str_mv |
37434227869 |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8111368Y0&tokenCaptchar=03AGdBq241Mr1-Pu0mP0oxwzS7Vj3xF78Q50zY6msHRwFCiwreT4jawQdZQfsfwY5Z-9bE5xEjQdkTJ7QON1cdSLRFWdTTdsHG3btfH7Ul3UPFueuyiaAz9ABq863HZHw0fpRbILM6oKVOwQkFN1rNySd0QU0X099jzqK8H8_JpRMa2uOoussonW3v2JUUpvlYIKQqTTZbboI4f4IBTGF-ONCX8m1ujGFGHRwSbnugmwKCSYVNxfsX7E-sgO36qS4wrwYG-SVjTDE8du8UCMBY4mG6rIZ5X-hE1sDX_7WqMqKYItAXqeYy8hl3L2KKCfh-RBl75KE77SRqn4lSk76m42_F-RBlzQ-cqOmpzgUwExEgvrZdcmy0QKhtQGkwNjvrWzyR1P4h89ze_1WOTf3VsOwTYQlrMufUO3-fEuMVilR5vkxoDR3HjzwgfANrMMf4O487ZGxjFUEfCCsZOeEy9NMBDDXSQR6oyQ |
dc.contributor.author.fl_str_mv |
Insardi, André |
contributor_str_mv |
Strehlau, Suzane Ponchio, Mateus Canniatti Francisco, Eduardo de Rezende |
dc.subject.por.fl_str_mv |
comportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacial |
topic |
comportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacial consumer behavior; Big Data; accessibility; urban mobility; spatial statistics CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
dc.subject.eng.fl_str_mv |
consumer behavior; Big Data; accessibility; urban mobility; spatial statistics |
dc.subject.cnpq.fl_str_mv |
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO |
description |
In a world transformed by the sharing economy and rapid technological evolution, one of the most affected markets is urban mobility, crowdsourcing transportation companies like Uber, 99, Lifty and others have changed the way people get around, what comes impacting the auto industry and the cities where the service is offered. In addition to these impacts, this new way of getting around produces a new study artifact, the digital trail of displacement, which can be understood from the perspective of Big Data, for example, when getting around the city through a shared ride service, the user and driver adjust the fare via the application, installed on their smartphones, where all the digital trace of the service provided is collected, such as origin, destination, route and other data. A theme that has been of interest to geographers, urban planners and sociologists over the years is that of accessibility, a measure that reflects the spatial development that consists of the transport network and the distribution of opportunities, reflected by the uses and occupation of urban land. This measure is also used by companies in different segments to plan investments and support decision making, such as some retail segments that use the distribution of public transport to plan the positioning of their stores. Therefore, this study seeks to relate the approach of Big Data with the concept of accessibility from the new data produced in the provision of services by transportation crowdsourcing companies. An exploratory study of the correlation of the tariff and the waiting time for the service and dynamic tariff is proposed, with socioeconomic variables from the city of São Paulo with the intention of exploring the use of these measures as an accessibility proxy. For this, the study proposes the creation of a database with the average of the estimated tariffs and the waiting time of the service, added to a set of socioeconomic variables and transport infrastructure. From this base it is proposed to develop MLR linear regression models, using the stepwise method selecting the most significant variables in the model and checking if there is a spatial pattern of the variables through the Moran I test, ending with a SAR autoregressive spatial model. All the models developed showed variables with a high degree of significance, such as: percentage of non-whites, amount of bushes and population density, in addition to Rsquare in the range of 0,80. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-11-05T15:19:36Z |
dc.date.issued.fl_str_mv |
2020-04-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Insardi, André. Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber. 2020. [50 f.]. Dissertação ( Programa de Mestrado Profissional em Comportamento do Consumidor) - Escola Superior de Propaganda e Marketing, [São Paulo] . |
dc.identifier.uri.fl_str_mv |
http://tede2.espm.br/handle/tede/507 |
identifier_str_mv |
Insardi, André. Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber. 2020. [50 f.]. Dissertação ( Programa de Mestrado Profissional em Comportamento do Consumidor) - Escola Superior de Propaganda e Marketing, [São Paulo] . |
url |
http://tede2.espm.br/handle/tede/507 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-5003969050085565866 |
dc.relation.confidence.fl_str_mv |
500 500 600 |
dc.relation.department.fl_str_mv |
-4455193753091852328 |
dc.relation.cnpq.fl_str_mv |
8024035432632778221 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Escola Superior de Propaganda e Marketing |
dc.publisher.program.fl_str_mv |
Programa de Mestrado Profissional em Comportamento do Consumidor |
dc.publisher.initials.fl_str_mv |
ESPM |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ESPM::Pós-Graduação Stricto Sensu |
publisher.none.fl_str_mv |
Escola Superior de Propaganda e Marketing |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da ESPM instname:Escola Superior de Propaganda e Marketing (ESPM) instacron:ESPM |
instname_str |
Escola Superior de Propaganda e Marketing (ESPM) |
instacron_str |
ESPM |
institution |
ESPM |
reponame_str |
Biblioteca Digital de Teses e Dissertações da ESPM |
collection |
Biblioteca Digital de Teses e Dissertações da ESPM |
bitstream.url.fl_str_mv |
http://tede2.espm.br:8080/tede/bitstream/tede/507/4/Andr%C3%A9+Insardi.pdf.jpg http://tede2.espm.br:8080/tede/bitstream/tede/507/3/Andr%C3%A9+Insardi.pdf.txt http://tede2.espm.br:8080/tede/bitstream/tede/507/2/Andr%C3%A9+Insardi.pdf http://tede2.espm.br:8080/tede/bitstream/tede/507/1/license.txt |
bitstream.checksum.fl_str_mv |
3cf95799d32252656b66725a54ea7569 5d21c3b9c776ab3fc3050d0135a56a61 c1bc977cdf3529be436778aa8673c5f8 652c58b294e08ded719d10bdbc42f8ce |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da ESPM - Escola Superior de Propaganda e Marketing (ESPM) |
repository.mail.fl_str_mv |
acervodigital@espm.br||hribeiro@espm.br |
_version_ |
1809112864883998720 |