Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber

Detalhes bibliográficos
Autor(a) principal: Insardi, André
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da ESPM
Texto Completo: http://tede2.espm.br/handle/tede/507
Resumo: In a world transformed by the sharing economy and rapid technological evolution, one of the most affected markets is urban mobility, crowdsourcing transportation companies like Uber, 99, Lifty and others have changed the way people get around, what comes impacting the auto industry and the cities where the service is offered. In addition to these impacts, this new way of getting around produces a new study artifact, the digital trail of displacement, which can be understood from the perspective of Big Data, for example, when getting around the city through a shared ride service, the user and driver adjust the fare via the application, installed on their smartphones, where all the digital trace of the service provided is collected, such as origin, destination, route and other data. A theme that has been of interest to geographers, urban planners and sociologists over the years is that of accessibility, a measure that reflects the spatial development that consists of the transport network and the distribution of opportunities, reflected by the uses and occupation of urban land. This measure is also used by companies in different segments to plan investments and support decision making, such as some retail segments that use the distribution of public transport to plan the positioning of their stores. Therefore, this study seeks to relate the approach of Big Data with the concept of accessibility from the new data produced in the provision of services by transportation crowdsourcing companies. An exploratory study of the correlation of the tariff and the waiting time for the service and dynamic tariff is proposed, with socioeconomic variables from the city of São Paulo with the intention of exploring the use of these measures as an accessibility proxy. For this, the study proposes the creation of a database with the average of the estimated tariffs and the waiting time of the service, added to a set of socioeconomic variables and transport infrastructure. From this base it is proposed to develop MLR linear regression models, using the stepwise method selecting the most significant variables in the model and checking if there is a spatial pattern of the variables through the Moran I test, ending with a SAR autoregressive spatial model. All the models developed showed variables with a high degree of significance, such as: percentage of non-whites, amount of bushes and population density, in addition to Rsquare in the range of 0,80.
id ESPM_7674bb5379cd2186b55b75e9a394c20e
oai_identifier_str oai:tede2.espm.br:tede/507
network_acronym_str ESPM
network_name_str Biblioteca Digital de Teses e Dissertações da ESPM
repository_id_str
spelling Strehlau, SuzanePonchio, Mateus CanniattiFrancisco, Eduardo de Rezende37434227869http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8111368Y0&tokenCaptchar=03AGdBq241Mr1-Pu0mP0oxwzS7Vj3xF78Q50zY6msHRwFCiwreT4jawQdZQfsfwY5Z-9bE5xEjQdkTJ7QON1cdSLRFWdTTdsHG3btfH7Ul3UPFueuyiaAz9ABq863HZHw0fpRbILM6oKVOwQkFN1rNySd0QU0X099jzqK8H8_JpRMa2uOoussonW3v2JUUpvlYIKQqTTZbboI4f4IBTGF-ONCX8m1ujGFGHRwSbnugmwKCSYVNxfsX7E-sgO36qS4wrwYG-SVjTDE8du8UCMBY4mG6rIZ5X-hE1sDX_7WqMqKYItAXqeYy8hl3L2KKCfh-RBl75KE77SRqn4lSk76m42_F-RBlzQ-cqOmpzgUwExEgvrZdcmy0QKhtQGkwNjvrWzyR1P4h89ze_1WOTf3VsOwTYQlrMufUO3-fEuMVilR5vkxoDR3HjzwgfANrMMf4O487ZGxjFUEfCCsZOeEy9NMBDDXSQR6oyQInsardi, André2020-11-05T15:19:36Z2020-04-23Insardi, André. Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber. 2020. [50 f.]. Dissertação ( Programa de Mestrado Profissional em Comportamento do Consumidor) - Escola Superior de Propaganda e Marketing, [São Paulo] .http://tede2.espm.br/handle/tede/507In a world transformed by the sharing economy and rapid technological evolution, one of the most affected markets is urban mobility, crowdsourcing transportation companies like Uber, 99, Lifty and others have changed the way people get around, what comes impacting the auto industry and the cities where the service is offered. In addition to these impacts, this new way of getting around produces a new study artifact, the digital trail of displacement, which can be understood from the perspective of Big Data, for example, when getting around the city through a shared ride service, the user and driver adjust the fare via the application, installed on their smartphones, where all the digital trace of the service provided is collected, such as origin, destination, route and other data. A theme that has been of interest to geographers, urban planners and sociologists over the years is that of accessibility, a measure that reflects the spatial development that consists of the transport network and the distribution of opportunities, reflected by the uses and occupation of urban land. This measure is also used by companies in different segments to plan investments and support decision making, such as some retail segments that use the distribution of public transport to plan the positioning of their stores. Therefore, this study seeks to relate the approach of Big Data with the concept of accessibility from the new data produced in the provision of services by transportation crowdsourcing companies. An exploratory study of the correlation of the tariff and the waiting time for the service and dynamic tariff is proposed, with socioeconomic variables from the city of São Paulo with the intention of exploring the use of these measures as an accessibility proxy. For this, the study proposes the creation of a database with the average of the estimated tariffs and the waiting time of the service, added to a set of socioeconomic variables and transport infrastructure. From this base it is proposed to develop MLR linear regression models, using the stepwise method selecting the most significant variables in the model and checking if there is a spatial pattern of the variables through the Moran I test, ending with a SAR autoregressive spatial model. All the models developed showed variables with a high degree of significance, such as: percentage of non-whites, amount of bushes and population density, in addition to Rsquare in the range of 0,80.Em um mundo transformado pela economia do compartilhamento e rápida evolução tecnológica, um dos mercados mais atingidos é o da mobilidade urbana. Empresas de crowdsourcing de transporte, como Uber, 99 e Lifty, entre outras, mudaram a forma de as pessoas se locomoverem, o que vem causando impacto na indústria automobilística e nas cidades onde o serviço é ofertado. Além desses impactos, a nova forma de locomoção produz um novo artefato de estudo, o rastro digital do deslocamento, que pode ser entendido sob a ótica do Big Data - por exemplo, ao se locomover na cidade por meio de um serviço de carona compartilhada, usuário e motorista realizam o acerto da tarifa via aplicativo, instalado em seus smartphones, e ali é registrado todo o rastro digital do serviço prestado, como origem, destino, percurso, dentre outros dados. Ao lado disso, um tema que vem sendo de interesse de geógrafos, urbanistas e sociólogos, ao longo dos anos, é o da acessibilidade, medida que reflete o desenvolvimento espacial constituído da rede de transporte e da distribuição de oportunidades dos usos e ocupação do solo urbano. Esta medida também é utilizada por empresas de diferentes segmentos, para planejar investimentos e apoiar a tomada de decisão, como alguns segmentos do varejo que utilizam a distribuição do transporte público para planejar o posicionamento das suas lojas. Sendo assim, este estudo busca relacionar a abordagem do Big Data com o conceito de acessibilidade, a partir dos novos dados produzidos na prestação de serviço de empresas de crowdsourcing de transporte. Para isso, propõe-se um estudo exploratório da correlação da tarifa e do tempo de espera do serviço e da tarifa dinâmica, com variáveis socioeconômicas da cidade de São Paulo, com o objetivo de explorar o uso dessas medidas como um proxy de acessibilidade. Assim, o estudo propõe a criação de uma base de dados, com a média das tarifas estimadas e do tempo de espera do serviço, agregado a um conjunto de variáveis socioeconômicas e de infraestrutura de transporte. A partir dessa base, serão elaborados Modelos de Regressão Linear - MLR, utilizando-se o método stepwise, selecionando-se as variáveis mais significativas do modelo, verificando se existe padrão espacial das variáveis, por meio do teste I de Moran, e finalizando com um modelo espacial autorregressivo SAR. Todos os modelos desenvolvidos apresentaram variáveis com alto grau de significância como: percentual de não brancos, quantidade de linhas de ônibus e densidade populacional, além de R² na casa de 0,80.Submitted by Adriana Alves Rodrigues (aalves@espm.br) on 2020-11-05T15:18:11Z No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5)Approved for entry into archive by Adriana Alves Rodrigues (aalves@espm.br) on 2020-11-05T15:19:14Z (GMT) No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5)Approved for entry into archive by Adriana Alves Rodrigues (aalves@espm.br) on 2020-11-05T15:19:24Z (GMT) No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5)Made available in DSpace on 2020-11-05T15:19:36Z (GMT). No. of bitstreams: 1 André Insardi.pdf: 2454383 bytes, checksum: c1bc977cdf3529be436778aa8673c5f8 (MD5) Previous issue date: 2020-04-23application/pdfhttp://tede2.espm.br/retrieve/1697/Andr%c3%a9%20Insardi.pdf.jpgporEscola Superior de Propaganda e MarketingPrograma de Mestrado Profissional em Comportamento do ConsumidorESPMBrasilESPM::Pós-Graduação Stricto Sensucomportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacialconsumer behavior; Big Data; accessibility; urban mobility; spatial statisticsCIENCIAS SOCIAIS APLICADAS::ADMINISTRACAOMedindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da UberMeasuring accessibility: a Big Data perspective on Uber service wait times and feesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-5003969050085565866500500600-44551937530918523288024035432632778221info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da ESPMinstname:Escola Superior de Propaganda e Marketing (ESPM)instacron:ESPMTHUMBNAILAndré Insardi.pdf.jpgAndré Insardi.pdf.jpgimage/jpeg5642http://tede2.espm.br:8080/tede/bitstream/tede/507/4/Andr%C3%A9+Insardi.pdf.jpg3cf95799d32252656b66725a54ea7569MD54TEXTAndré Insardi.pdf.txtAndré Insardi.pdf.txttext/plain91606http://tede2.espm.br:8080/tede/bitstream/tede/507/3/Andr%C3%A9+Insardi.pdf.txt5d21c3b9c776ab3fc3050d0135a56a61MD53ORIGINALAndré Insardi.pdfAndré Insardi.pdfapplication/pdf2454383http://tede2.espm.br:8080/tede/bitstream/tede/507/2/Andr%C3%A9+Insardi.pdfc1bc977cdf3529be436778aa8673c5f8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81912http://tede2.espm.br:8080/tede/bitstream/tede/507/1/license.txt652c58b294e08ded719d10bdbc42f8ceMD51tede/5072020-11-06 02:00:22.9oai:tede2.espm.br:tede/507TElDRU7Dh0EgREUgRElTVFJJQlVJw4dBTyBOw4NPLUVYQ0xVU0lWQQpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIEVTUE0gbyBkaXJlaXRvIG5vLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSBkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIGVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgRVNQTSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBFU1BNIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIG7Do28gaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgRVNQTSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPTyBTRUpBIEEgRVNQTSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIEVTUE0gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyAocykgbm9tZSAocykgZG8gKHMpIGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcmEgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede2.espm.br/http://tede2.espm.br/oai/requestacervodigital@espm.br||hribeiro@espm.bropendoar:2020-11-06T04:00:22Biblioteca Digital de Teses e Dissertações da ESPM - Escola Superior de Propaganda e Marketing (ESPM)false
dc.title.por.fl_str_mv Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
dc.title.alternative.eng.fl_str_mv Measuring accessibility: a Big Data perspective on Uber service wait times and fees
title Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
spellingShingle Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
Insardi, André
comportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacial
consumer behavior; Big Data; accessibility; urban mobility; spatial statistics
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
title_short Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
title_full Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
title_fullStr Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
title_full_unstemmed Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
title_sort Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber
author Insardi, André
author_facet Insardi, André
author_role author
dc.contributor.advisor1.fl_str_mv Strehlau, Suzane
dc.contributor.referee1.fl_str_mv Ponchio, Mateus Canniatti
dc.contributor.referee2.fl_str_mv Francisco, Eduardo de Rezende
dc.contributor.authorID.fl_str_mv 37434227869
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8111368Y0&tokenCaptchar=03AGdBq241Mr1-Pu0mP0oxwzS7Vj3xF78Q50zY6msHRwFCiwreT4jawQdZQfsfwY5Z-9bE5xEjQdkTJ7QON1cdSLRFWdTTdsHG3btfH7Ul3UPFueuyiaAz9ABq863HZHw0fpRbILM6oKVOwQkFN1rNySd0QU0X099jzqK8H8_JpRMa2uOoussonW3v2JUUpvlYIKQqTTZbboI4f4IBTGF-ONCX8m1ujGFGHRwSbnugmwKCSYVNxfsX7E-sgO36qS4wrwYG-SVjTDE8du8UCMBY4mG6rIZ5X-hE1sDX_7WqMqKYItAXqeYy8hl3L2KKCfh-RBl75KE77SRqn4lSk76m42_F-RBlzQ-cqOmpzgUwExEgvrZdcmy0QKhtQGkwNjvrWzyR1P4h89ze_1WOTf3VsOwTYQlrMufUO3-fEuMVilR5vkxoDR3HjzwgfANrMMf4O487ZGxjFUEfCCsZOeEy9NMBDDXSQR6oyQ
dc.contributor.author.fl_str_mv Insardi, André
contributor_str_mv Strehlau, Suzane
Ponchio, Mateus Canniatti
Francisco, Eduardo de Rezende
dc.subject.por.fl_str_mv comportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacial
topic comportamento do consumidor; Big Data; acessibilidade; mobilidade urbana; estatística espacial
consumer behavior; Big Data; accessibility; urban mobility; spatial statistics
CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
dc.subject.eng.fl_str_mv consumer behavior; Big Data; accessibility; urban mobility; spatial statistics
dc.subject.cnpq.fl_str_mv CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
description In a world transformed by the sharing economy and rapid technological evolution, one of the most affected markets is urban mobility, crowdsourcing transportation companies like Uber, 99, Lifty and others have changed the way people get around, what comes impacting the auto industry and the cities where the service is offered. In addition to these impacts, this new way of getting around produces a new study artifact, the digital trail of displacement, which can be understood from the perspective of Big Data, for example, when getting around the city through a shared ride service, the user and driver adjust the fare via the application, installed on their smartphones, where all the digital trace of the service provided is collected, such as origin, destination, route and other data. A theme that has been of interest to geographers, urban planners and sociologists over the years is that of accessibility, a measure that reflects the spatial development that consists of the transport network and the distribution of opportunities, reflected by the uses and occupation of urban land. This measure is also used by companies in different segments to plan investments and support decision making, such as some retail segments that use the distribution of public transport to plan the positioning of their stores. Therefore, this study seeks to relate the approach of Big Data with the concept of accessibility from the new data produced in the provision of services by transportation crowdsourcing companies. An exploratory study of the correlation of the tariff and the waiting time for the service and dynamic tariff is proposed, with socioeconomic variables from the city of São Paulo with the intention of exploring the use of these measures as an accessibility proxy. For this, the study proposes the creation of a database with the average of the estimated tariffs and the waiting time of the service, added to a set of socioeconomic variables and transport infrastructure. From this base it is proposed to develop MLR linear regression models, using the stepwise method selecting the most significant variables in the model and checking if there is a spatial pattern of the variables through the Moran I test, ending with a SAR autoregressive spatial model. All the models developed showed variables with a high degree of significance, such as: percentage of non-whites, amount of bushes and population density, in addition to Rsquare in the range of 0,80.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-11-05T15:19:36Z
dc.date.issued.fl_str_mv 2020-04-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Insardi, André. Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber. 2020. [50 f.]. Dissertação ( Programa de Mestrado Profissional em Comportamento do Consumidor) - Escola Superior de Propaganda e Marketing, [São Paulo] .
dc.identifier.uri.fl_str_mv http://tede2.espm.br/handle/tede/507
identifier_str_mv Insardi, André. Medindo a acessibilidade: uma perspectiva de Big Data sobre os tempos de espera e tarifas do serviço da Uber. 2020. [50 f.]. Dissertação ( Programa de Mestrado Profissional em Comportamento do Consumidor) - Escola Superior de Propaganda e Marketing, [São Paulo] .
url http://tede2.espm.br/handle/tede/507
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5003969050085565866
dc.relation.confidence.fl_str_mv 500
500
600
dc.relation.department.fl_str_mv -4455193753091852328
dc.relation.cnpq.fl_str_mv 8024035432632778221
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Escola Superior de Propaganda e Marketing
dc.publisher.program.fl_str_mv Programa de Mestrado Profissional em Comportamento do Consumidor
dc.publisher.initials.fl_str_mv ESPM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ESPM::Pós-Graduação Stricto Sensu
publisher.none.fl_str_mv Escola Superior de Propaganda e Marketing
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da ESPM
instname:Escola Superior de Propaganda e Marketing (ESPM)
instacron:ESPM
instname_str Escola Superior de Propaganda e Marketing (ESPM)
instacron_str ESPM
institution ESPM
reponame_str Biblioteca Digital de Teses e Dissertações da ESPM
collection Biblioteca Digital de Teses e Dissertações da ESPM
bitstream.url.fl_str_mv http://tede2.espm.br:8080/tede/bitstream/tede/507/4/Andr%C3%A9+Insardi.pdf.jpg
http://tede2.espm.br:8080/tede/bitstream/tede/507/3/Andr%C3%A9+Insardi.pdf.txt
http://tede2.espm.br:8080/tede/bitstream/tede/507/2/Andr%C3%A9+Insardi.pdf
http://tede2.espm.br:8080/tede/bitstream/tede/507/1/license.txt
bitstream.checksum.fl_str_mv 3cf95799d32252656b66725a54ea7569
5d21c3b9c776ab3fc3050d0135a56a61
c1bc977cdf3529be436778aa8673c5f8
652c58b294e08ded719d10bdbc42f8ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da ESPM - Escola Superior de Propaganda e Marketing (ESPM)
repository.mail.fl_str_mv acervodigital@espm.br||hribeiro@espm.br
_version_ 1809112864883998720