Screening and identification of proteins using a bioinformatic tool: UniProt

Detalhes bibliográficos
Autor(a) principal: Soares, Álvaro Arthur do Nascimento
Data de Publicação: 2023
Outros Autores: Santos, Franklyn Emanuell Gomes dos, Geraldes, Amandio Aristides Rihan, Nascimento, Josiel Santos do, Hana, Pollyanna Almeida dos Santos Abu, Almeida, Carlos Arthur Cardoso
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Scire Salutis
Texto Completo: https://sustenere.inf.br/index.php/sciresalutis/article/view/8313
Resumo: Oral Cancer (OC), prevalent in nations with medium or low HDI, is diagnosed by histopathology after a biopsy. Plasma and saliva emerge as promising samples for biomarker candidates, and, in this context, digital biological repositories, such as the Universal Protein Resource (UniProt), with a vast collection of proteins, assume importance in helping identify proteins, becoming an important digital tool in protein screening. To evaluate the feasibility and usefulness of UniProt and related databases in identifying CO-associated proteins and genes in plasma, saliva, and oral mucosa samples. Initially, in the UniProt ware added keywords to identify proteins in plasma (“plasma”), saliva (“saliva” and “salivary”) and oral mucosa (“oral cavity”, “oral mucosa”, “mouth mucosa” and “buccal mucosa”) and CO proteins (“oral cancer”, “mouth cancer”, “oral tumor” and “buccal cancer”). Next, keywords of each sample were paired with those of CO in Excel to identify the best combinations of terms and to identify specific proteins of CO in each type of sample. The resulted proteins were validated using Open Targets and The Human Protein Atlas. Databases such as PUBMED and Scopus were consulted as needed. Fallowed, proteins were paired from each sample to detect specific expressions in each tissue. The Shapiro-Wilk test (W < 0.767, p < 0.05) was used for statistical analysis. 6226 proteins were identified in plasma, 653 in saliva and 561 in oral mucosa. The crosses resulted in 55 proteins in plasma (“plasma” AND “buccal cancer”), 14 in saliva (“salivary” AND “oral cancer”) and 190 in mucosa (“buccal mucosa” AND “buccal cancer”). Similar results were obtained with the same terms applied in UniProt. Some proteins were confirmed in the literature in samples from patients with CO: 04 in plasma, 04 in saliva and 32 in the oral mucosa. These findings did not demonstrate significant differences in the distribution of protein expression among the samples. Oral mucosa showed the highest amount of differentially expressed proteins, while no protein, common to the three samples was identified. Results have shown UniProt to be a useful tool for the identification and screening of CO proteins, where the malignant oral mucosa showed the highest number of expressed proteins as well as the number of references in the literature, indicating a promising field for future research. The identified proteins have potential as CO biomarkers, requiring in vitro and in vivo validation studies.
id ESS-1_168ea589cff74ba1e183b06c193c5aff
oai_identifier_str oai:ojs.pkp.sfu.ca:article/8313
network_acronym_str ESS-1
network_name_str Scire Salutis
repository_id_str
spelling Screening and identification of proteins using a bioinformatic tool: UniProtTriagem e identificação de proteínas usando uma ferramenta de bioinformática: UniProtCâncer oralUniProtBancos de dadosProteínasAmostras biológicasOral cancerUniProtDatabasesProteinsBiological samplesOral Cancer (OC), prevalent in nations with medium or low HDI, is diagnosed by histopathology after a biopsy. Plasma and saliva emerge as promising samples for biomarker candidates, and, in this context, digital biological repositories, such as the Universal Protein Resource (UniProt), with a vast collection of proteins, assume importance in helping identify proteins, becoming an important digital tool in protein screening. To evaluate the feasibility and usefulness of UniProt and related databases in identifying CO-associated proteins and genes in plasma, saliva, and oral mucosa samples. Initially, in the UniProt ware added keywords to identify proteins in plasma (“plasma”), saliva (“saliva” and “salivary”) and oral mucosa (“oral cavity”, “oral mucosa”, “mouth mucosa” and “buccal mucosa”) and CO proteins (“oral cancer”, “mouth cancer”, “oral tumor” and “buccal cancer”). Next, keywords of each sample were paired with those of CO in Excel to identify the best combinations of terms and to identify specific proteins of CO in each type of sample. The resulted proteins were validated using Open Targets and The Human Protein Atlas. Databases such as PUBMED and Scopus were consulted as needed. Fallowed, proteins were paired from each sample to detect specific expressions in each tissue. The Shapiro-Wilk test (W < 0.767, p < 0.05) was used for statistical analysis. 6226 proteins were identified in plasma, 653 in saliva and 561 in oral mucosa. The crosses resulted in 55 proteins in plasma (“plasma” AND “buccal cancer”), 14 in saliva (“salivary” AND “oral cancer”) and 190 in mucosa (“buccal mucosa” AND “buccal cancer”). Similar results were obtained with the same terms applied in UniProt. Some proteins were confirmed in the literature in samples from patients with CO: 04 in plasma, 04 in saliva and 32 in the oral mucosa. These findings did not demonstrate significant differences in the distribution of protein expression among the samples. Oral mucosa showed the highest amount of differentially expressed proteins, while no protein, common to the three samples was identified. Results have shown UniProt to be a useful tool for the identification and screening of CO proteins, where the malignant oral mucosa showed the highest number of expressed proteins as well as the number of references in the literature, indicating a promising field for future research. The identified proteins have potential as CO biomarkers, requiring in vitro and in vivo validation studies.O Câncer Oral (CO), prevalente em nações de IDH médio ou baixo, é diagnosticado por exame histopatológico após biópsia. Plasma e saliva surgem como amostras promissoras para candidatos a biomarcadores, e, nesse contexto, repositórios biológicos digitais, como o Universal Protein Resource (UniProt), com vasto acervo de proteínas, assumem importância ao auxiliar na identificação proteínas tornando-se uma ferramenta digital importante no rastreamento de proteínas. Avaliar a viabilidade e utilidade do UniProt e de bancos de dados relacionados na identificação de proteínas e genes associados ao CO em amostras de plasma, saliva e mucosa oral. Inicialmente, foram empregados, no UniProt, palavras-chave para identificar proteínas no plasma (“plasma”), saliva (“saliva” e “salivary”) e mucosa oral (“oral cavity”, “oral mucosa”, “mouth mucosa” e “buccal mucosa”) e proteínas do CO (“oral câncer”, “mouth câncer”, “oral tumor” e “buccal câncer”). Na sequência, foi realizado o pareamento das palavras-chave de cada amostra com as de CO no Excel para identificar as melhores combinações de termos e para identificar proteínas específicos do CO em cada tipo de amostra. As proteínas identificadas foram validadas usando Open Targets e The Human Protein Atlas. Bases como PUBMED e Scopus foram consultados conforme necessário. Em seguida, pareamos proteínas de cada amostra para detectar expressão específica em cada tecido. Utilizou-se o teste de Shapiro-Wilk (W < 0,767, p < 0,05) para análise estatística. 6.226 proteínas foram identificadas no plasma, 653 na saliva e 561 na mucosa oral. Os cruzamentos resultaram em 55 proteínas no plasma (“plasma” AND “buccal câncer”), 14 na saliva (“salivary” AND “oral cancer”) e 190 na mucosa (“buccal mucosa” AND “buccal câncer”). Resultados semelhantes foram obtidos com os mesmos termos aplicados no UniProt. Algumas proteínas foram confirmadas na literatura em amostras de pacientes com CO: 04 no plasma, 04 na saliva e 32 na mucosa oral. Os achados não demonstraram diferenças significativas na distribuição da expressão das proteínas entre as amostras. A mucosa oral apresentou a maior quantidade de proteínas diferencialmente expressas, e não foram identificadas proteínas comuns às três amostras. Pela metodologia utilizada, o UniProt mostrou-se uma ferramenta útil para a identificação e triagem de proteínas de CO, onde identificou-se na mucosa oral maligna uma maior expressão diferencial de proteínas e com maior número de referências na literatura, indicando um campo promissor para futuras pesquisas. As proteínas identificadas têm potencial como biomarcadores do CO, sendo necessários estudos de validação in vitro e in vivo.Sustenere Publishing2023-08-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://sustenere.inf.br/index.php/sciresalutis/article/view/831310.6008/CBPC2236-9600.2023.002.0001Scire Salutis; Vol. 13 No. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17Scire Salutis; Vol. 13 Núm. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17Scire Salutis; v. 13 n. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-172236-9600reponame:Scire Salutisinstname:Companhia Brasileira de Produção Científica (CBPC)instacron:ESSporenghttps://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4426https://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4425Copyright (c) 2023 Scire Salutishttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessSoares, Álvaro Arthur do Nascimento Santos, Franklyn Emanuell Gomes dos Geraldes, Amandio Aristides Rihan Nascimento, Josiel Santos do Hana, Pollyanna Almeida dos Santos Abu Almeida, Carlos Arthur Cardoso 2023-12-29T22:29:37Zoai:ojs.pkp.sfu.ca:article/8313Revistahttps://sustenere.co/index.php/sciresalutisONGhttps://sustenere.co/index.php/sciresalutis/oai||carlos@arvore.org.br2236-96002236-9600opendoar:2023-12-29T22:29:37Scire Salutis - Companhia Brasileira de Produção Científica (CBPC)false
dc.title.none.fl_str_mv Screening and identification of proteins using a bioinformatic tool: UniProt
Triagem e identificação de proteínas usando uma ferramenta de bioinformática: UniProt
title Screening and identification of proteins using a bioinformatic tool: UniProt
spellingShingle Screening and identification of proteins using a bioinformatic tool: UniProt
Soares, Álvaro Arthur do Nascimento
Câncer oral
UniProt
Bancos de dados
Proteínas
Amostras biológicas
Oral cancer
UniProt
Databases
Proteins
Biological samples
title_short Screening and identification of proteins using a bioinformatic tool: UniProt
title_full Screening and identification of proteins using a bioinformatic tool: UniProt
title_fullStr Screening and identification of proteins using a bioinformatic tool: UniProt
title_full_unstemmed Screening and identification of proteins using a bioinformatic tool: UniProt
title_sort Screening and identification of proteins using a bioinformatic tool: UniProt
author Soares, Álvaro Arthur do Nascimento
author_facet Soares, Álvaro Arthur do Nascimento
Santos, Franklyn Emanuell Gomes dos
Geraldes, Amandio Aristides Rihan
Nascimento, Josiel Santos do
Hana, Pollyanna Almeida dos Santos Abu
Almeida, Carlos Arthur Cardoso
author_role author
author2 Santos, Franklyn Emanuell Gomes dos
Geraldes, Amandio Aristides Rihan
Nascimento, Josiel Santos do
Hana, Pollyanna Almeida dos Santos Abu
Almeida, Carlos Arthur Cardoso
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Soares, Álvaro Arthur do Nascimento
Santos, Franklyn Emanuell Gomes dos
Geraldes, Amandio Aristides Rihan
Nascimento, Josiel Santos do
Hana, Pollyanna Almeida dos Santos Abu
Almeida, Carlos Arthur Cardoso
dc.subject.por.fl_str_mv Câncer oral
UniProt
Bancos de dados
Proteínas
Amostras biológicas
Oral cancer
UniProt
Databases
Proteins
Biological samples
topic Câncer oral
UniProt
Bancos de dados
Proteínas
Amostras biológicas
Oral cancer
UniProt
Databases
Proteins
Biological samples
description Oral Cancer (OC), prevalent in nations with medium or low HDI, is diagnosed by histopathology after a biopsy. Plasma and saliva emerge as promising samples for biomarker candidates, and, in this context, digital biological repositories, such as the Universal Protein Resource (UniProt), with a vast collection of proteins, assume importance in helping identify proteins, becoming an important digital tool in protein screening. To evaluate the feasibility and usefulness of UniProt and related databases in identifying CO-associated proteins and genes in plasma, saliva, and oral mucosa samples. Initially, in the UniProt ware added keywords to identify proteins in plasma (“plasma”), saliva (“saliva” and “salivary”) and oral mucosa (“oral cavity”, “oral mucosa”, “mouth mucosa” and “buccal mucosa”) and CO proteins (“oral cancer”, “mouth cancer”, “oral tumor” and “buccal cancer”). Next, keywords of each sample were paired with those of CO in Excel to identify the best combinations of terms and to identify specific proteins of CO in each type of sample. The resulted proteins were validated using Open Targets and The Human Protein Atlas. Databases such as PUBMED and Scopus were consulted as needed. Fallowed, proteins were paired from each sample to detect specific expressions in each tissue. The Shapiro-Wilk test (W < 0.767, p < 0.05) was used for statistical analysis. 6226 proteins were identified in plasma, 653 in saliva and 561 in oral mucosa. The crosses resulted in 55 proteins in plasma (“plasma” AND “buccal cancer”), 14 in saliva (“salivary” AND “oral cancer”) and 190 in mucosa (“buccal mucosa” AND “buccal cancer”). Similar results were obtained with the same terms applied in UniProt. Some proteins were confirmed in the literature in samples from patients with CO: 04 in plasma, 04 in saliva and 32 in the oral mucosa. These findings did not demonstrate significant differences in the distribution of protein expression among the samples. Oral mucosa showed the highest amount of differentially expressed proteins, while no protein, common to the three samples was identified. Results have shown UniProt to be a useful tool for the identification and screening of CO proteins, where the malignant oral mucosa showed the highest number of expressed proteins as well as the number of references in the literature, indicating a promising field for future research. The identified proteins have potential as CO biomarkers, requiring in vitro and in vivo validation studies.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://sustenere.inf.br/index.php/sciresalutis/article/view/8313
10.6008/CBPC2236-9600.2023.002.0001
url https://sustenere.inf.br/index.php/sciresalutis/article/view/8313
identifier_str_mv 10.6008/CBPC2236-9600.2023.002.0001
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4426
https://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4425
dc.rights.driver.fl_str_mv Copyright (c) 2023 Scire Salutis
http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Scire Salutis
http://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sustenere Publishing
publisher.none.fl_str_mv Sustenere Publishing
dc.source.none.fl_str_mv Scire Salutis; Vol. 13 No. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17
Scire Salutis; Vol. 13 Núm. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17
Scire Salutis; v. 13 n. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17
2236-9600
reponame:Scire Salutis
instname:Companhia Brasileira de Produção Científica (CBPC)
instacron:ESS
instname_str Companhia Brasileira de Produção Científica (CBPC)
instacron_str ESS
institution ESS
reponame_str Scire Salutis
collection Scire Salutis
repository.name.fl_str_mv Scire Salutis - Companhia Brasileira de Produção Científica (CBPC)
repository.mail.fl_str_mv ||carlos@arvore.org.br
_version_ 1793890279323860992