Screening and identification of proteins using a bioinformatic tool: UniProt
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Scire Salutis |
Texto Completo: | https://sustenere.inf.br/index.php/sciresalutis/article/view/8313 |
Resumo: | Oral Cancer (OC), prevalent in nations with medium or low HDI, is diagnosed by histopathology after a biopsy. Plasma and saliva emerge as promising samples for biomarker candidates, and, in this context, digital biological repositories, such as the Universal Protein Resource (UniProt), with a vast collection of proteins, assume importance in helping identify proteins, becoming an important digital tool in protein screening. To evaluate the feasibility and usefulness of UniProt and related databases in identifying CO-associated proteins and genes in plasma, saliva, and oral mucosa samples. Initially, in the UniProt ware added keywords to identify proteins in plasma (“plasma”), saliva (“saliva” and “salivary”) and oral mucosa (“oral cavity”, “oral mucosa”, “mouth mucosa” and “buccal mucosa”) and CO proteins (“oral cancer”, “mouth cancer”, “oral tumor” and “buccal cancer”). Next, keywords of each sample were paired with those of CO in Excel to identify the best combinations of terms and to identify specific proteins of CO in each type of sample. The resulted proteins were validated using Open Targets and The Human Protein Atlas. Databases such as PUBMED and Scopus were consulted as needed. Fallowed, proteins were paired from each sample to detect specific expressions in each tissue. The Shapiro-Wilk test (W < 0.767, p < 0.05) was used for statistical analysis. 6226 proteins were identified in plasma, 653 in saliva and 561 in oral mucosa. The crosses resulted in 55 proteins in plasma (“plasma” AND “buccal cancer”), 14 in saliva (“salivary” AND “oral cancer”) and 190 in mucosa (“buccal mucosa” AND “buccal cancer”). Similar results were obtained with the same terms applied in UniProt. Some proteins were confirmed in the literature in samples from patients with CO: 04 in plasma, 04 in saliva and 32 in the oral mucosa. These findings did not demonstrate significant differences in the distribution of protein expression among the samples. Oral mucosa showed the highest amount of differentially expressed proteins, while no protein, common to the three samples was identified. Results have shown UniProt to be a useful tool for the identification and screening of CO proteins, where the malignant oral mucosa showed the highest number of expressed proteins as well as the number of references in the literature, indicating a promising field for future research. The identified proteins have potential as CO biomarkers, requiring in vitro and in vivo validation studies. |
id |
ESS-1_168ea589cff74ba1e183b06c193c5aff |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/8313 |
network_acronym_str |
ESS-1 |
network_name_str |
Scire Salutis |
repository_id_str |
|
spelling |
Screening and identification of proteins using a bioinformatic tool: UniProtTriagem e identificação de proteínas usando uma ferramenta de bioinformática: UniProtCâncer oralUniProtBancos de dadosProteínasAmostras biológicasOral cancerUniProtDatabasesProteinsBiological samplesOral Cancer (OC), prevalent in nations with medium or low HDI, is diagnosed by histopathology after a biopsy. Plasma and saliva emerge as promising samples for biomarker candidates, and, in this context, digital biological repositories, such as the Universal Protein Resource (UniProt), with a vast collection of proteins, assume importance in helping identify proteins, becoming an important digital tool in protein screening. To evaluate the feasibility and usefulness of UniProt and related databases in identifying CO-associated proteins and genes in plasma, saliva, and oral mucosa samples. Initially, in the UniProt ware added keywords to identify proteins in plasma (“plasma”), saliva (“saliva” and “salivary”) and oral mucosa (“oral cavity”, “oral mucosa”, “mouth mucosa” and “buccal mucosa”) and CO proteins (“oral cancer”, “mouth cancer”, “oral tumor” and “buccal cancer”). Next, keywords of each sample were paired with those of CO in Excel to identify the best combinations of terms and to identify specific proteins of CO in each type of sample. The resulted proteins were validated using Open Targets and The Human Protein Atlas. Databases such as PUBMED and Scopus were consulted as needed. Fallowed, proteins were paired from each sample to detect specific expressions in each tissue. The Shapiro-Wilk test (W < 0.767, p < 0.05) was used for statistical analysis. 6226 proteins were identified in plasma, 653 in saliva and 561 in oral mucosa. The crosses resulted in 55 proteins in plasma (“plasma” AND “buccal cancer”), 14 in saliva (“salivary” AND “oral cancer”) and 190 in mucosa (“buccal mucosa” AND “buccal cancer”). Similar results were obtained with the same terms applied in UniProt. Some proteins were confirmed in the literature in samples from patients with CO: 04 in plasma, 04 in saliva and 32 in the oral mucosa. These findings did not demonstrate significant differences in the distribution of protein expression among the samples. Oral mucosa showed the highest amount of differentially expressed proteins, while no protein, common to the three samples was identified. Results have shown UniProt to be a useful tool for the identification and screening of CO proteins, where the malignant oral mucosa showed the highest number of expressed proteins as well as the number of references in the literature, indicating a promising field for future research. The identified proteins have potential as CO biomarkers, requiring in vitro and in vivo validation studies.O Câncer Oral (CO), prevalente em nações de IDH médio ou baixo, é diagnosticado por exame histopatológico após biópsia. Plasma e saliva surgem como amostras promissoras para candidatos a biomarcadores, e, nesse contexto, repositórios biológicos digitais, como o Universal Protein Resource (UniProt), com vasto acervo de proteínas, assumem importância ao auxiliar na identificação proteínas tornando-se uma ferramenta digital importante no rastreamento de proteínas. Avaliar a viabilidade e utilidade do UniProt e de bancos de dados relacionados na identificação de proteínas e genes associados ao CO em amostras de plasma, saliva e mucosa oral. Inicialmente, foram empregados, no UniProt, palavras-chave para identificar proteínas no plasma (“plasma”), saliva (“saliva” e “salivary”) e mucosa oral (“oral cavity”, “oral mucosa”, “mouth mucosa” e “buccal mucosa”) e proteínas do CO (“oral câncer”, “mouth câncer”, “oral tumor” e “buccal câncer”). Na sequência, foi realizado o pareamento das palavras-chave de cada amostra com as de CO no Excel para identificar as melhores combinações de termos e para identificar proteínas específicos do CO em cada tipo de amostra. As proteínas identificadas foram validadas usando Open Targets e The Human Protein Atlas. Bases como PUBMED e Scopus foram consultados conforme necessário. Em seguida, pareamos proteínas de cada amostra para detectar expressão específica em cada tecido. Utilizou-se o teste de Shapiro-Wilk (W < 0,767, p < 0,05) para análise estatística. 6.226 proteínas foram identificadas no plasma, 653 na saliva e 561 na mucosa oral. Os cruzamentos resultaram em 55 proteínas no plasma (“plasma” AND “buccal câncer”), 14 na saliva (“salivary” AND “oral cancer”) e 190 na mucosa (“buccal mucosa” AND “buccal câncer”). Resultados semelhantes foram obtidos com os mesmos termos aplicados no UniProt. Algumas proteínas foram confirmadas na literatura em amostras de pacientes com CO: 04 no plasma, 04 na saliva e 32 na mucosa oral. Os achados não demonstraram diferenças significativas na distribuição da expressão das proteínas entre as amostras. A mucosa oral apresentou a maior quantidade de proteínas diferencialmente expressas, e não foram identificadas proteínas comuns às três amostras. Pela metodologia utilizada, o UniProt mostrou-se uma ferramenta útil para a identificação e triagem de proteínas de CO, onde identificou-se na mucosa oral maligna uma maior expressão diferencial de proteínas e com maior número de referências na literatura, indicando um campo promissor para futuras pesquisas. As proteínas identificadas têm potencial como biomarcadores do CO, sendo necessários estudos de validação in vitro e in vivo.Sustenere Publishing2023-08-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://sustenere.inf.br/index.php/sciresalutis/article/view/831310.6008/CBPC2236-9600.2023.002.0001Scire Salutis; Vol. 13 No. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17Scire Salutis; Vol. 13 Núm. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17Scire Salutis; v. 13 n. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-172236-9600reponame:Scire Salutisinstname:Companhia Brasileira de Produção Científica (CBPC)instacron:ESSporenghttps://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4426https://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4425Copyright (c) 2023 Scire Salutishttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessSoares, Álvaro Arthur do Nascimento Santos, Franklyn Emanuell Gomes dos Geraldes, Amandio Aristides Rihan Nascimento, Josiel Santos do Hana, Pollyanna Almeida dos Santos Abu Almeida, Carlos Arthur Cardoso 2023-12-29T22:29:37Zoai:ojs.pkp.sfu.ca:article/8313Revistahttps://sustenere.co/index.php/sciresalutisONGhttps://sustenere.co/index.php/sciresalutis/oai||carlos@arvore.org.br2236-96002236-9600opendoar:2023-12-29T22:29:37Scire Salutis - Companhia Brasileira de Produção Científica (CBPC)false |
dc.title.none.fl_str_mv |
Screening and identification of proteins using a bioinformatic tool: UniProt Triagem e identificação de proteínas usando uma ferramenta de bioinformática: UniProt |
title |
Screening and identification of proteins using a bioinformatic tool: UniProt |
spellingShingle |
Screening and identification of proteins using a bioinformatic tool: UniProt Soares, Álvaro Arthur do Nascimento Câncer oral UniProt Bancos de dados Proteínas Amostras biológicas Oral cancer UniProt Databases Proteins Biological samples |
title_short |
Screening and identification of proteins using a bioinformatic tool: UniProt |
title_full |
Screening and identification of proteins using a bioinformatic tool: UniProt |
title_fullStr |
Screening and identification of proteins using a bioinformatic tool: UniProt |
title_full_unstemmed |
Screening and identification of proteins using a bioinformatic tool: UniProt |
title_sort |
Screening and identification of proteins using a bioinformatic tool: UniProt |
author |
Soares, Álvaro Arthur do Nascimento |
author_facet |
Soares, Álvaro Arthur do Nascimento Santos, Franklyn Emanuell Gomes dos Geraldes, Amandio Aristides Rihan Nascimento, Josiel Santos do Hana, Pollyanna Almeida dos Santos Abu Almeida, Carlos Arthur Cardoso |
author_role |
author |
author2 |
Santos, Franklyn Emanuell Gomes dos Geraldes, Amandio Aristides Rihan Nascimento, Josiel Santos do Hana, Pollyanna Almeida dos Santos Abu Almeida, Carlos Arthur Cardoso |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Soares, Álvaro Arthur do Nascimento Santos, Franklyn Emanuell Gomes dos Geraldes, Amandio Aristides Rihan Nascimento, Josiel Santos do Hana, Pollyanna Almeida dos Santos Abu Almeida, Carlos Arthur Cardoso |
dc.subject.por.fl_str_mv |
Câncer oral UniProt Bancos de dados Proteínas Amostras biológicas Oral cancer UniProt Databases Proteins Biological samples |
topic |
Câncer oral UniProt Bancos de dados Proteínas Amostras biológicas Oral cancer UniProt Databases Proteins Biological samples |
description |
Oral Cancer (OC), prevalent in nations with medium or low HDI, is diagnosed by histopathology after a biopsy. Plasma and saliva emerge as promising samples for biomarker candidates, and, in this context, digital biological repositories, such as the Universal Protein Resource (UniProt), with a vast collection of proteins, assume importance in helping identify proteins, becoming an important digital tool in protein screening. To evaluate the feasibility and usefulness of UniProt and related databases in identifying CO-associated proteins and genes in plasma, saliva, and oral mucosa samples. Initially, in the UniProt ware added keywords to identify proteins in plasma (“plasma”), saliva (“saliva” and “salivary”) and oral mucosa (“oral cavity”, “oral mucosa”, “mouth mucosa” and “buccal mucosa”) and CO proteins (“oral cancer”, “mouth cancer”, “oral tumor” and “buccal cancer”). Next, keywords of each sample were paired with those of CO in Excel to identify the best combinations of terms and to identify specific proteins of CO in each type of sample. The resulted proteins were validated using Open Targets and The Human Protein Atlas. Databases such as PUBMED and Scopus were consulted as needed. Fallowed, proteins were paired from each sample to detect specific expressions in each tissue. The Shapiro-Wilk test (W < 0.767, p < 0.05) was used for statistical analysis. 6226 proteins were identified in plasma, 653 in saliva and 561 in oral mucosa. The crosses resulted in 55 proteins in plasma (“plasma” AND “buccal cancer”), 14 in saliva (“salivary” AND “oral cancer”) and 190 in mucosa (“buccal mucosa” AND “buccal cancer”). Similar results were obtained with the same terms applied in UniProt. Some proteins were confirmed in the literature in samples from patients with CO: 04 in plasma, 04 in saliva and 32 in the oral mucosa. These findings did not demonstrate significant differences in the distribution of protein expression among the samples. Oral mucosa showed the highest amount of differentially expressed proteins, while no protein, common to the three samples was identified. Results have shown UniProt to be a useful tool for the identification and screening of CO proteins, where the malignant oral mucosa showed the highest number of expressed proteins as well as the number of references in the literature, indicating a promising field for future research. The identified proteins have potential as CO biomarkers, requiring in vitro and in vivo validation studies. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://sustenere.inf.br/index.php/sciresalutis/article/view/8313 10.6008/CBPC2236-9600.2023.002.0001 |
url |
https://sustenere.inf.br/index.php/sciresalutis/article/view/8313 |
identifier_str_mv |
10.6008/CBPC2236-9600.2023.002.0001 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4426 https://sustenere.inf.br/index.php/sciresalutis/article/view/8313/4425 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Scire Salutis http://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Scire Salutis http://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sustenere Publishing |
publisher.none.fl_str_mv |
Sustenere Publishing |
dc.source.none.fl_str_mv |
Scire Salutis; Vol. 13 No. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17 Scire Salutis; Vol. 13 Núm. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17 Scire Salutis; v. 13 n. 2 (2023): Scire Salutis - Fev, Mar, Abr 2023; 1-17 2236-9600 reponame:Scire Salutis instname:Companhia Brasileira de Produção Científica (CBPC) instacron:ESS |
instname_str |
Companhia Brasileira de Produção Científica (CBPC) |
instacron_str |
ESS |
institution |
ESS |
reponame_str |
Scire Salutis |
collection |
Scire Salutis |
repository.name.fl_str_mv |
Scire Salutis - Companhia Brasileira de Produção Científica (CBPC) |
repository.mail.fl_str_mv |
||carlos@arvore.org.br |
_version_ |
1793890279323860992 |