Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility

Detalhes bibliográficos
Autor(a) principal: Galdi, Fernando Caio
Data de Publicação: 2007
Outros Autores: Pereira, Leonel Molero
Tipo de documento: Artigo
Idioma: eng
por
Título da fonte: BBR. Brazilian Business Review (English edition. Online)
Texto Completo: http://www.bbronline.com.br/index.php/bbr/article/view/425
Resumo: This paper explores three models to estimate volatility: exponential weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by these models can be used to measure the market risk of a portfolio of assets, called Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. For empirical assessment of these models, we used a sample based on Petrobras stock prices to specify the GARCH and SV models. Additionally, we adjusted these models by violation backtesting for one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility models (suggested by RiskMetrics). The results suggest that VaR calculated considering EWMA was less violated than when considering SV and GARCH for a 1500-observation window. Hence, for our sample, the model suggested by RiskMetrics (1999), which uses exponential smoothing and is easier to implement, did not produce inferior violation test results when compared to more sophisticated tests such as SV and GARCH.   
id FBS-1_a0b5b383d01250d475ee7c14543b4aac
oai_identifier_str oai:ojs.pkp.sfu.ca:article/425
network_acronym_str FBS-1
network_name_str BBR. Brazilian Business Review (English edition. Online)
repository_id_str
spelling Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic VolatilityValor em Risco (VaR) utilizando modelos de previsão de volatilidade: EWMA, GARCH e Volatilidade EstocásticaVaRStochastic VolatilityGARCHEWMAVaRVolatilidade EstocásticaGARCHEWMAThis paper explores three models to estimate volatility: exponential weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by these models can be used to measure the market risk of a portfolio of assets, called Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. For empirical assessment of these models, we used a sample based on Petrobras stock prices to specify the GARCH and SV models. Additionally, we adjusted these models by violation backtesting for one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility models (suggested by RiskMetrics). The results suggest that VaR calculated considering EWMA was less violated than when considering SV and GARCH for a 1500-observation window. Hence, for our sample, the model suggested by RiskMetrics (1999), which uses exponential smoothing and is easier to implement, did not produce inferior violation test results when compared to more sophisticated tests such as SV and GARCH.   Este artigo explora três modelos utilizados para a estimativa da volatilidade: suavização exponencial – EWMA, volatilidade condicional – GARCH e volatilidade estocástica – VE. A volatilidade estimada por estes modelos pode ser utilizada em uma métrica de risco de mercado denominada Valor em Risco – VaR. A medida do VaR depende da volatilidade, do horizonte de tempo e do intervalo de confiança para os retornos contínuos em análise. Para a avaliação empírica destes modelos utilizamos uma amostra com preços de ações preferenciais da Petrobras para a especificação do GARCH e do modelo de VE. Adicionalmente realizamos testes para se verificar o ajustamento dos modelos à amostra selecionada. Nesse sentido utilizamos o teste de violação dos limites para um VaR de um dia, com intuito de comparar a eficiência dos modelos GARCH, VE e EWMA (sugerido pelo Riskmetrics). Pelos resultados verifica-se que o VaR calculado pelo EWMA sofreu um menor número de violações do que o calculado pelo GARCH e pela VE para uma janela de 1500 observações. Assim, o modelo sugerido pelo Riskmetrics (1999), utilizando a volatilidade calculada através da suavização exponencial, além de ser favorecido pela simplicidade em sua implementação, não forneceu resultados inferiores no teste de violação, comparado a modelos mais sofisticados como o de VE e o GARCH.FUCAPE Business Shool2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed ArticleArtigo revisado pelos paresapplication/pdfapplication/pdfhttp://www.bbronline.com.br/index.php/bbr/article/view/42510.15728/bbr.2007.4.1.5Brazilian Business Review; Vol. 4 No. 1 (2007): January to April 2007; 74-94Brazilian Business Review; v. 4 n. 1 (2007): Janeiro a Abril de 2007; 74-941808-23861807-734Xreponame:BBR. Brazilian Business Review (English edition. Online)instname:Fucape Business School (FBS)instacron:FBSengporhttp://www.bbronline.com.br/index.php/bbr/article/view/425/648http://www.bbronline.com.br/index.php/bbr/article/view/425/649Copyright (c) 2007 Brazilian Business Reviewhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGaldi, Fernando CaioPereira, Leonel Molero2018-11-06T19:59:58Zoai:ojs.pkp.sfu.ca:article/425Revistahttps://www.bbronline.com.br/index.php/bbr/indexONGhttp://www.bbronline.com.br/index.php/bbr/oai|| bbronline@bbronline.com.br1808-23861808-2386opendoar:2018-11-06T19:59:58BBR. Brazilian Business Review (English edition. Online) - Fucape Business School (FBS)false
dc.title.none.fl_str_mv Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
Valor em Risco (VaR) utilizando modelos de previsão de volatilidade: EWMA, GARCH e Volatilidade Estocástica
title Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
spellingShingle Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
Galdi, Fernando Caio
VaR
Stochastic Volatility
GARCH
EWMA
VaR
Volatilidade Estocástica
GARCH
EWMA
title_short Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
title_full Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
title_fullStr Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
title_full_unstemmed Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
title_sort Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
author Galdi, Fernando Caio
author_facet Galdi, Fernando Caio
Pereira, Leonel Molero
author_role author
author2 Pereira, Leonel Molero
author2_role author
dc.contributor.author.fl_str_mv Galdi, Fernando Caio
Pereira, Leonel Molero
dc.subject.por.fl_str_mv VaR
Stochastic Volatility
GARCH
EWMA
VaR
Volatilidade Estocástica
GARCH
EWMA
topic VaR
Stochastic Volatility
GARCH
EWMA
VaR
Volatilidade Estocástica
GARCH
EWMA
description This paper explores three models to estimate volatility: exponential weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by these models can be used to measure the market risk of a portfolio of assets, called Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. For empirical assessment of these models, we used a sample based on Petrobras stock prices to specify the GARCH and SV models. Additionally, we adjusted these models by violation backtesting for one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility models (suggested by RiskMetrics). The results suggest that VaR calculated considering EWMA was less violated than when considering SV and GARCH for a 1500-observation window. Hence, for our sample, the model suggested by RiskMetrics (1999), which uses exponential smoothing and is easier to implement, did not produce inferior violation test results when compared to more sophisticated tests such as SV and GARCH.   
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
Artigo revisado pelos pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.bbronline.com.br/index.php/bbr/article/view/425
10.15728/bbr.2007.4.1.5
url http://www.bbronline.com.br/index.php/bbr/article/view/425
identifier_str_mv 10.15728/bbr.2007.4.1.5
dc.language.iso.fl_str_mv eng
por
language eng
por
dc.relation.none.fl_str_mv http://www.bbronline.com.br/index.php/bbr/article/view/425/648
http://www.bbronline.com.br/index.php/bbr/article/view/425/649
dc.rights.driver.fl_str_mv Copyright (c) 2007 Brazilian Business Review
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2007 Brazilian Business Review
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv FUCAPE Business Shool
publisher.none.fl_str_mv FUCAPE Business Shool
dc.source.none.fl_str_mv Brazilian Business Review; Vol. 4 No. 1 (2007): January to April 2007; 74-94
Brazilian Business Review; v. 4 n. 1 (2007): Janeiro a Abril de 2007; 74-94
1808-2386
1807-734X
reponame:BBR. Brazilian Business Review (English edition. Online)
instname:Fucape Business School (FBS)
instacron:FBS
instname_str Fucape Business School (FBS)
instacron_str FBS
institution FBS
reponame_str BBR. Brazilian Business Review (English edition. Online)
collection BBR. Brazilian Business Review (English edition. Online)
repository.name.fl_str_mv BBR. Brazilian Business Review (English edition. Online) - Fucape Business School (FBS)
repository.mail.fl_str_mv || bbronline@bbronline.com.br
_version_ 1754732238635794432