Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng por |
Título da fonte: | BBR. Brazilian Business Review (English edition. Online) |
Texto Completo: | http://www.bbronline.com.br/index.php/bbr/article/view/425 |
Resumo: | This paper explores three models to estimate volatility: exponential weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by these models can be used to measure the market risk of a portfolio of assets, called Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. For empirical assessment of these models, we used a sample based on Petrobras stock prices to specify the GARCH and SV models. Additionally, we adjusted these models by violation backtesting for one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility models (suggested by RiskMetrics). The results suggest that VaR calculated considering EWMA was less violated than when considering SV and GARCH for a 1500-observation window. Hence, for our sample, the model suggested by RiskMetrics (1999), which uses exponential smoothing and is easier to implement, did not produce inferior violation test results when compared to more sophisticated tests such as SV and GARCH. |
id |
FBS-1_a0b5b383d01250d475ee7c14543b4aac |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/425 |
network_acronym_str |
FBS-1 |
network_name_str |
BBR. Brazilian Business Review (English edition. Online) |
repository_id_str |
|
spelling |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic VolatilityValor em Risco (VaR) utilizando modelos de previsão de volatilidade: EWMA, GARCH e Volatilidade EstocásticaVaRStochastic VolatilityGARCHEWMAVaRVolatilidade EstocásticaGARCHEWMAThis paper explores three models to estimate volatility: exponential weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by these models can be used to measure the market risk of a portfolio of assets, called Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. For empirical assessment of these models, we used a sample based on Petrobras stock prices to specify the GARCH and SV models. Additionally, we adjusted these models by violation backtesting for one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility models (suggested by RiskMetrics). The results suggest that VaR calculated considering EWMA was less violated than when considering SV and GARCH for a 1500-observation window. Hence, for our sample, the model suggested by RiskMetrics (1999), which uses exponential smoothing and is easier to implement, did not produce inferior violation test results when compared to more sophisticated tests such as SV and GARCH. Este artigo explora três modelos utilizados para a estimativa da volatilidade: suavização exponencial – EWMA, volatilidade condicional – GARCH e volatilidade estocástica – VE. A volatilidade estimada por estes modelos pode ser utilizada em uma métrica de risco de mercado denominada Valor em Risco – VaR. A medida do VaR depende da volatilidade, do horizonte de tempo e do intervalo de confiança para os retornos contínuos em análise. Para a avaliação empírica destes modelos utilizamos uma amostra com preços de ações preferenciais da Petrobras para a especificação do GARCH e do modelo de VE. Adicionalmente realizamos testes para se verificar o ajustamento dos modelos à amostra selecionada. Nesse sentido utilizamos o teste de violação dos limites para um VaR de um dia, com intuito de comparar a eficiência dos modelos GARCH, VE e EWMA (sugerido pelo Riskmetrics). Pelos resultados verifica-se que o VaR calculado pelo EWMA sofreu um menor número de violações do que o calculado pelo GARCH e pela VE para uma janela de 1500 observações. Assim, o modelo sugerido pelo Riskmetrics (1999), utilizando a volatilidade calculada através da suavização exponencial, além de ser favorecido pela simplicidade em sua implementação, não forneceu resultados inferiores no teste de violação, comparado a modelos mais sofisticados como o de VE e o GARCH.FUCAPE Business Shool2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed ArticleArtigo revisado pelos paresapplication/pdfapplication/pdfhttp://www.bbronline.com.br/index.php/bbr/article/view/42510.15728/bbr.2007.4.1.5Brazilian Business Review; Vol. 4 No. 1 (2007): January to April 2007; 74-94Brazilian Business Review; v. 4 n. 1 (2007): Janeiro a Abril de 2007; 74-941808-23861807-734Xreponame:BBR. Brazilian Business Review (English edition. Online)instname:Fucape Business School (FBS)instacron:FBSengporhttp://www.bbronline.com.br/index.php/bbr/article/view/425/648http://www.bbronline.com.br/index.php/bbr/article/view/425/649Copyright (c) 2007 Brazilian Business Reviewhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGaldi, Fernando CaioPereira, Leonel Molero2018-11-06T19:59:58Zoai:ojs.pkp.sfu.ca:article/425Revistahttps://www.bbronline.com.br/index.php/bbr/indexONGhttp://www.bbronline.com.br/index.php/bbr/oai|| bbronline@bbronline.com.br1808-23861808-2386opendoar:2018-11-06T19:59:58BBR. Brazilian Business Review (English edition. Online) - Fucape Business School (FBS)false |
dc.title.none.fl_str_mv |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility Valor em Risco (VaR) utilizando modelos de previsão de volatilidade: EWMA, GARCH e Volatilidade Estocástica |
title |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility |
spellingShingle |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility Galdi, Fernando Caio VaR Stochastic Volatility GARCH EWMA VaR Volatilidade Estocástica GARCH EWMA |
title_short |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility |
title_full |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility |
title_fullStr |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility |
title_full_unstemmed |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility |
title_sort |
Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility |
author |
Galdi, Fernando Caio |
author_facet |
Galdi, Fernando Caio Pereira, Leonel Molero |
author_role |
author |
author2 |
Pereira, Leonel Molero |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Galdi, Fernando Caio Pereira, Leonel Molero |
dc.subject.por.fl_str_mv |
VaR Stochastic Volatility GARCH EWMA VaR Volatilidade Estocástica GARCH EWMA |
topic |
VaR Stochastic Volatility GARCH EWMA VaR Volatilidade Estocástica GARCH EWMA |
description |
This paper explores three models to estimate volatility: exponential weighted moving average (EWMA), generalized autoregressive conditional heteroskedasticity (GARCH) and stochastic volatility (SV). The volatility estimated by these models can be used to measure the market risk of a portfolio of assets, called Value at Risk (VaR). VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. For empirical assessment of these models, we used a sample based on Petrobras stock prices to specify the GARCH and SV models. Additionally, we adjusted these models by violation backtesting for one-day VaR, to compare the efficiency of the SV, GARCH and EWMA volatility models (suggested by RiskMetrics). The results suggest that VaR calculated considering EWMA was less violated than when considering SV and GARCH for a 1500-observation window. Hence, for our sample, the model suggested by RiskMetrics (1999), which uses exponential smoothing and is easier to implement, did not produce inferior violation test results when compared to more sophisticated tests such as SV and GARCH. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article Artigo revisado pelos pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.bbronline.com.br/index.php/bbr/article/view/425 10.15728/bbr.2007.4.1.5 |
url |
http://www.bbronline.com.br/index.php/bbr/article/view/425 |
identifier_str_mv |
10.15728/bbr.2007.4.1.5 |
dc.language.iso.fl_str_mv |
eng por |
language |
eng por |
dc.relation.none.fl_str_mv |
http://www.bbronline.com.br/index.php/bbr/article/view/425/648 http://www.bbronline.com.br/index.php/bbr/article/view/425/649 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2007 Brazilian Business Review https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2007 Brazilian Business Review https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
FUCAPE Business Shool |
publisher.none.fl_str_mv |
FUCAPE Business Shool |
dc.source.none.fl_str_mv |
Brazilian Business Review; Vol. 4 No. 1 (2007): January to April 2007; 74-94 Brazilian Business Review; v. 4 n. 1 (2007): Janeiro a Abril de 2007; 74-94 1808-2386 1807-734X reponame:BBR. Brazilian Business Review (English edition. Online) instname:Fucape Business School (FBS) instacron:FBS |
instname_str |
Fucape Business School (FBS) |
instacron_str |
FBS |
institution |
FBS |
reponame_str |
BBR. Brazilian Business Review (English edition. Online) |
collection |
BBR. Brazilian Business Review (English edition. Online) |
repository.name.fl_str_mv |
BBR. Brazilian Business Review (English edition. Online) - Fucape Business School (FBS) |
repository.mail.fl_str_mv |
|| bbronline@bbronline.com.br |
_version_ |
1754732238635794432 |