Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks

Detalhes bibliográficos
Autor(a) principal: Carlini, Lucas Carlini
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da FEI
Texto Completo: https://repositorio.fei.edu.br/handle/FEI/4763
https://doi.org/10.31414/EE.2023.D.131608
Resumo: One of the most important challenges of the scientific community is to mitigate the several consequences for neonates due to pain exposure. This challenge is mainly justified by the fact that neonates are not able to verbally communicate pain, hindering the correct identification of the presence and intensity of this phenomenon. In this context, several clinical scales have been proposed to assess pain, using, among other parameters, the facial features of the neonate. However, a better comprehension of these features is yet required, since some recent results have shown the subjectivity of these scales. Meanwhile, computational frameworks have been implemented to automate neonatal pain assessment. Despite their impressive performances, these frameworks still lack to understand the corresponding decision-making processes. Therefore, we propose to investigate in this dissertation the facial features related to the human and machine neonatal pain assessments, comparing the visual perceived regions by health-professionals experts and parents of neonates with the most relevant ones extracted by eXplainable Artificial Intelligence (XAI) methods using two classification models: (i) VGG-Face, trained originally in facial recognition, and (ii) N-CNN, implemented and trained end-to-end for neonatal pain assessment. Our findings show that the regions used by the classification models are clinically relevant to neonatal pain assessment, yet do not agree with the facial perception of healthprofessionals and parents. Consequently, these differences suggest that humans and machines can learn with each other in order to improve their current decision-making process of identifying the discriminant information related to neonatal pain. Additionally, we observed that, using the same classification model, the XAI methods implemented here yield distinct relevant facial features to the same input image. These results raise concerns about the effective use and interpretation of XAI methods, and, more importantly, what regions of the image are truly relevant to the decision-making process of the classification model. Nevertheless, our findings advance the current knowledge on how humans and machines code and decode the neonatal facial response to pain. We believe that these findings might enable further improvements in clinical scales and computation tools widely used in real situations, whether based on human or machine decision-making process
id FEI_19a1146b0486fbd3187f5545a04c2669
oai_identifier_str oai:repositorio.fei.edu.br:FEI/4763
network_acronym_str FEI
network_name_str Biblioteca Digital de Teses e Dissertações da FEI
repository_id_str https://repositorio.fei.edu.br/oai/request
spelling Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networksDor neonatalInteligência artificialOne of the most important challenges of the scientific community is to mitigate the several consequences for neonates due to pain exposure. This challenge is mainly justified by the fact that neonates are not able to verbally communicate pain, hindering the correct identification of the presence and intensity of this phenomenon. In this context, several clinical scales have been proposed to assess pain, using, among other parameters, the facial features of the neonate. However, a better comprehension of these features is yet required, since some recent results have shown the subjectivity of these scales. Meanwhile, computational frameworks have been implemented to automate neonatal pain assessment. Despite their impressive performances, these frameworks still lack to understand the corresponding decision-making processes. Therefore, we propose to investigate in this dissertation the facial features related to the human and machine neonatal pain assessments, comparing the visual perceived regions by health-professionals experts and parents of neonates with the most relevant ones extracted by eXplainable Artificial Intelligence (XAI) methods using two classification models: (i) VGG-Face, trained originally in facial recognition, and (ii) N-CNN, implemented and trained end-to-end for neonatal pain assessment. Our findings show that the regions used by the classification models are clinically relevant to neonatal pain assessment, yet do not agree with the facial perception of healthprofessionals and parents. Consequently, these differences suggest that humans and machines can learn with each other in order to improve their current decision-making process of identifying the discriminant information related to neonatal pain. Additionally, we observed that, using the same classification model, the XAI methods implemented here yield distinct relevant facial features to the same input image. These results raise concerns about the effective use and interpretation of XAI methods, and, more importantly, what regions of the image are truly relevant to the decision-making process of the classification model. Nevertheless, our findings advance the current knowledge on how humans and machines code and decode the neonatal facial response to pain. We believe that these findings might enable further improvements in clinical scales and computation tools widely used in real situations, whether based on human or machine decision-making processUm dos mais importantes desafios da comunidade científica é mitigar as diversas consequências à exposição da dor em neonatos. Este desafio é principalmente justificado pelo fato de que neonatos não são capazes de verbalizarem dor, dificultando a correta identificação da presença e intensidade deste fenômeno. Neste contexto, diversas escalas clínicas têm sido propostas para avaliar dor, usando, entre outros parâmetros, as características faciais do neonato. Entretanto, uma melhor compreensão dessas caracterísitcas é ainda necessária, visto que resultados recentes demonstraram a subjetividade destas escalas. Enquanto isso, metodologias computacionais têm sido implementadas para automatizar a avaliação da dor neonatal. Apesar de terem desempenho expressivo, estes métodos não permitem a compreensão dos seus processos de tomada de decisão. Portanto, esta dissertação investiga as características faciais relacionadas a avaliação de dor neonatal humana e computacional, comparando as regiões visualmente observadas por profissionais de saúde e pais de neonatos com as características mais relevantes extraídas por métodos de Interpretação de Inteligência Artificial (IIA) utilizando dois modelos de classificação: (i) VGG-Face, treinada originalmente em reconhecimento facial, e (ii) N-CNN, implementada e treinada especificamente para a avaliação de dor neonatal. Os resultados obtidos mostram que as regiões utilizadas pelos modelos de classificação são clinicamente relevantes para a avaliação de dor neonatal, porém, não concordam com a percepção facial de profissionais de sáude e pais. Consequentemente, essas diferenças sugerem que humanos e máquinas podem aprender entre si de forma a melhorar seus atuais processos de identificar as informações discrimimantes da dor neonatal. Adicionalmente, foi observado que, utilizando o mesmo modelo de classificação, métodos distintos de IIA geram diferentes extrações de características para a mesma amostra de imagem de entrada. Estes resultados geram preocupações sobre o efetivo uso e interpretação desses métodos, e, mais importante ainda, quais são as regiões faciais realmente relevantes para o processo de tomada de decisão do modelo computacional. Não obstante, os resultados obtidos avançam o conhecimento atual em como humanos e máquinas codificam e decodificam a resposta facial à dor por neonatos. Estes achados podem permitir o futuro melhoramento das escalas clínicas e ferramentas computacionais utilizadas vastamente em situações reais, sejam esses métodos baseados em decisões humanas ou de máquinaCentro Universitário FEI, São Bernardo do CampoThomaz, C. E.Carlini, Lucas Carlini2023-04-08T14:17:56Z2023-04-08T14:17:56Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCARLINI, Lucas Carlini. <b> Human vs machine towards neonatal pain assessment: </b> a comparison of the facial features extracted by adults and convolutional neural networks. 2023. 96 p. Dissertação (Mestrado Engenharia Elétrica ) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EE.2023.D.131608.https://repositorio.fei.edu.br/handle/FEI/4763https://doi.org/10.31414/EE.2023.D.131608engen_USProcessamento de Sinais e Imagensreponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEIinfo:eu-repo/semantics/openAccess2024-03-01T22:48:32Zoai:repositorio.fei.edu.br:FEI/4763Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2024-03-01T22:48:32Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false
dc.title.none.fl_str_mv Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
title Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
spellingShingle Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
Carlini, Lucas Carlini
Dor neonatal
Inteligência artificial
title_short Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
title_full Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
title_fullStr Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
title_full_unstemmed Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
title_sort Human vs machine towards neonatal pain assessment: a comparison of the facial features extracted by adults and convolutional neural networks
author Carlini, Lucas Carlini
author_facet Carlini, Lucas Carlini
author_role author
dc.contributor.none.fl_str_mv Thomaz, C. E.
dc.contributor.author.fl_str_mv Carlini, Lucas Carlini
dc.subject.por.fl_str_mv Dor neonatal
Inteligência artificial
topic Dor neonatal
Inteligência artificial
description One of the most important challenges of the scientific community is to mitigate the several consequences for neonates due to pain exposure. This challenge is mainly justified by the fact that neonates are not able to verbally communicate pain, hindering the correct identification of the presence and intensity of this phenomenon. In this context, several clinical scales have been proposed to assess pain, using, among other parameters, the facial features of the neonate. However, a better comprehension of these features is yet required, since some recent results have shown the subjectivity of these scales. Meanwhile, computational frameworks have been implemented to automate neonatal pain assessment. Despite their impressive performances, these frameworks still lack to understand the corresponding decision-making processes. Therefore, we propose to investigate in this dissertation the facial features related to the human and machine neonatal pain assessments, comparing the visual perceived regions by health-professionals experts and parents of neonates with the most relevant ones extracted by eXplainable Artificial Intelligence (XAI) methods using two classification models: (i) VGG-Face, trained originally in facial recognition, and (ii) N-CNN, implemented and trained end-to-end for neonatal pain assessment. Our findings show that the regions used by the classification models are clinically relevant to neonatal pain assessment, yet do not agree with the facial perception of healthprofessionals and parents. Consequently, these differences suggest that humans and machines can learn with each other in order to improve their current decision-making process of identifying the discriminant information related to neonatal pain. Additionally, we observed that, using the same classification model, the XAI methods implemented here yield distinct relevant facial features to the same input image. These results raise concerns about the effective use and interpretation of XAI methods, and, more importantly, what regions of the image are truly relevant to the decision-making process of the classification model. Nevertheless, our findings advance the current knowledge on how humans and machines code and decode the neonatal facial response to pain. We believe that these findings might enable further improvements in clinical scales and computation tools widely used in real situations, whether based on human or machine decision-making process
publishDate 2023
dc.date.none.fl_str_mv 2023-04-08T14:17:56Z
2023-04-08T14:17:56Z
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CARLINI, Lucas Carlini. <b> Human vs machine towards neonatal pain assessment: </b> a comparison of the facial features extracted by adults and convolutional neural networks. 2023. 96 p. Dissertação (Mestrado Engenharia Elétrica ) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EE.2023.D.131608.
https://repositorio.fei.edu.br/handle/FEI/4763
https://doi.org/10.31414/EE.2023.D.131608
identifier_str_mv CARLINI, Lucas Carlini. <b> Human vs machine towards neonatal pain assessment: </b> a comparison of the facial features extracted by adults and convolutional neural networks. 2023. 96 p. Dissertação (Mestrado Engenharia Elétrica ) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EE.2023.D.131608.
url https://repositorio.fei.edu.br/handle/FEI/4763
https://doi.org/10.31414/EE.2023.D.131608
dc.language.iso.fl_str_mv eng
en_US
language eng
language_invalid_str_mv en_US
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv Processamento de Sinais e Imagens
dc.publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da FEI
instname:Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron:FEI
instname_str Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron_str FEI
institution FEI
reponame_str Biblioteca Digital de Teses e Dissertações da FEI
collection Biblioteca Digital de Teses e Dissertações da FEI
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)
repository.mail.fl_str_mv cfernandes@fei.edu.br
_version_ 1809225179116601344