Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da FEI |
Texto Completo: | https://repositorio.fei.edu.br/handle/FEI/4437 https://doi.org/10.31414/EE.2022.T.131409 |
Resumo: | The goal of this project is the investigation of existing spatial reasoning formalism for collaborative systems, in order to interpret a scene from multiple viewpoints in the task of environment mapping. Motivated by the increasing need of interaction between humans and robots, Qualitative Spatial Reasoning (QSR) theories are integrated into a single formalism for modeling the perceptions of remotely operated Unmanned Aircraft Vehicles (UAV). Qualitative theories enables the exchange of information between humans and robotic agents, so that they can perform tasks in collaborative missions involving searching and monitoring objectives in agriculture, natural disasters, searching and rescue tasks, among others. The combination of the studied spatial theories led to the development of two formalism: the LH Interval Calculus and the Collaborative Spatial reasoning. LH Interval Calculus consists in the combination of Region Connection Calculus and Allen’s Interval Algebra to describe the relations of two objects from an aerial point of view. Collaborative Spatial Reasoning combines the Cardinal Direction Calculus with LH Interval Calculus to the task of environment mapping where agents have a partial view of the scene. UAVs equipped with cameras are the platform used to test the formalism of this project, capturing images with a partial view of the environment, from different directions of flight. The results obtained showed that the two formalism proposed were successful in the task of mapping the environment |
id |
FEI_35b79597d92548f4ebe473c28c271fb0 |
---|---|
oai_identifier_str |
oai:repositorio.fei.edu.br:FEI/4437 |
network_acronym_str |
FEI |
network_name_str |
Biblioteca Digital de Teses e Dissertações da FEI |
repository_id_str |
https://repositorio.fei.edu.br/oai/request |
spelling |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehiclescollaborative spatial reasoningqualitative spatial reasoningAllen's interval algebraenvironment mappingThe goal of this project is the investigation of existing spatial reasoning formalism for collaborative systems, in order to interpret a scene from multiple viewpoints in the task of environment mapping. Motivated by the increasing need of interaction between humans and robots, Qualitative Spatial Reasoning (QSR) theories are integrated into a single formalism for modeling the perceptions of remotely operated Unmanned Aircraft Vehicles (UAV). Qualitative theories enables the exchange of information between humans and robotic agents, so that they can perform tasks in collaborative missions involving searching and monitoring objectives in agriculture, natural disasters, searching and rescue tasks, among others. The combination of the studied spatial theories led to the development of two formalism: the LH Interval Calculus and the Collaborative Spatial reasoning. LH Interval Calculus consists in the combination of Region Connection Calculus and Allen’s Interval Algebra to describe the relations of two objects from an aerial point of view. Collaborative Spatial Reasoning combines the Cardinal Direction Calculus with LH Interval Calculus to the task of environment mapping where agents have a partial view of the scene. UAVs equipped with cameras are the platform used to test the formalism of this project, capturing images with a partial view of the environment, from different directions of flight. The results obtained showed that the two formalism proposed were successful in the task of mapping the environmentO objetivo deste projeto é a investigação dos formalismos de raciocínio espacial existentes para sistemas colaborativos, a fim de interpretar uma cena a partir de múltiplos pontos de vista em tarefas de mapeamento de ambientes. Motivadas pela crescente necessidade de interação entre humanos e robôs, as teorias do Raciocínio Espacial Qualitativo (QSR) são integradas em um único formalismo para modelar as percepções de veículos aéreos não tripulados (VANTs) operados remotamente. As teorias qualitativas possibilitam a troca de informações entre humanos e agentes robóticos, para que possam realizar tarefas em missões colaborativas envolvendo objetivos de busca e monitoramento na agricultura, desastres naturais, tarefas de busca e resgate, entre outros. A combinação das teorias espaciais estudadas levou ao desenvolvimento de dois formalismos: o Cálculo de Intervalo LH e o Raciocínio Espacial Colaborativo. O Cálculo de Intervalo LH consiste na combinação do Cálculo de Conexões de Regiões com a Algebra de Intervalos de Allen para descrever as relações entre dois objetos de um ponto de vista aéreo. O Raciocínio Espacial Colaborativo combina o Cálculo de Direção Cardinal com o Cálculo do Intervalo LH para a tarefa de mapeamento do ambiente onde os agentes têm uma visão parcial da cena. VANTs equipados com câmeras são a plataforma utilizada para testar o formalismo deste projeto, captando imagens com uma visão parcial do ambiente, de diferentes direções de voo. Os resultados obtidos mostraram que os dois formalismos propostos tiveram sucesso na tarefa de mapeamento do ambienteCentro Universitário FEI, São Bernardo do CampoSantos, Paulo EduardoSécolo, A. C.2022-03-10T14:45:07Z2022-03-10T14:45:07Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSÉCOLO, A. C. <b> Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles. </b> 2022. 103 p. Tese (Doutorado em Engenharia Elétrica ) - Centro Universitário FEI , São Bernardo do Campo, 2022 Disponível em: https://doi.org/10.31414/EE.2022.T.131409.https://repositorio.fei.edu.br/handle/FEI/4437https://doi.org/10.31414/EE.2022.T.131409engen_USInteligência Artificial Aplicada à Automação e Robóticareponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEIinfo:eu-repo/semantics/openAccess2024-03-01T22:48:27Zoai:repositorio.fei.edu.br:FEI/4437Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2024-03-01T22:48:27Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false |
dc.title.none.fl_str_mv |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
title |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
spellingShingle |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles Sécolo, A. C. collaborative spatial reasoning qualitative spatial reasoning Allen's interval algebra environment mapping |
title_short |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
title_full |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
title_fullStr |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
title_full_unstemmed |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
title_sort |
Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles |
author |
Sécolo, A. C. |
author_facet |
Sécolo, A. C. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Paulo Eduardo |
dc.contributor.author.fl_str_mv |
Sécolo, A. C. |
dc.subject.por.fl_str_mv |
collaborative spatial reasoning qualitative spatial reasoning Allen's interval algebra environment mapping |
topic |
collaborative spatial reasoning qualitative spatial reasoning Allen's interval algebra environment mapping |
description |
The goal of this project is the investigation of existing spatial reasoning formalism for collaborative systems, in order to interpret a scene from multiple viewpoints in the task of environment mapping. Motivated by the increasing need of interaction between humans and robots, Qualitative Spatial Reasoning (QSR) theories are integrated into a single formalism for modeling the perceptions of remotely operated Unmanned Aircraft Vehicles (UAV). Qualitative theories enables the exchange of information between humans and robotic agents, so that they can perform tasks in collaborative missions involving searching and monitoring objectives in agriculture, natural disasters, searching and rescue tasks, among others. The combination of the studied spatial theories led to the development of two formalism: the LH Interval Calculus and the Collaborative Spatial reasoning. LH Interval Calculus consists in the combination of Region Connection Calculus and Allen’s Interval Algebra to describe the relations of two objects from an aerial point of view. Collaborative Spatial Reasoning combines the Cardinal Direction Calculus with LH Interval Calculus to the task of environment mapping where agents have a partial view of the scene. UAVs equipped with cameras are the platform used to test the formalism of this project, capturing images with a partial view of the environment, from different directions of flight. The results obtained showed that the two formalism proposed were successful in the task of mapping the environment |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-10T14:45:07Z 2022-03-10T14:45:07Z 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SÉCOLO, A. C. <b> Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles. </b> 2022. 103 p. Tese (Doutorado em Engenharia Elétrica ) - Centro Universitário FEI , São Bernardo do Campo, 2022 Disponível em: https://doi.org/10.31414/EE.2022.T.131409. https://repositorio.fei.edu.br/handle/FEI/4437 https://doi.org/10.31414/EE.2022.T.131409 |
identifier_str_mv |
SÉCOLO, A. C. <b> Collaborative spatial reasoning for environment mapping using unmanned aerial vehicles. </b> 2022. 103 p. Tese (Doutorado em Engenharia Elétrica ) - Centro Universitário FEI , São Bernardo do Campo, 2022 Disponível em: https://doi.org/10.31414/EE.2022.T.131409. |
url |
https://repositorio.fei.edu.br/handle/FEI/4437 https://doi.org/10.31414/EE.2022.T.131409 |
dc.language.iso.fl_str_mv |
eng en_US |
language |
eng |
language_invalid_str_mv |
en_US |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Inteligência Artificial Aplicada à Automação e Robótica |
dc.publisher.none.fl_str_mv |
Centro Universitário FEI, São Bernardo do Campo |
publisher.none.fl_str_mv |
Centro Universitário FEI, São Bernardo do Campo |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da FEI instname:Centro Universitário da Fundação Educacional Inaciana (FEI) instacron:FEI |
instname_str |
Centro Universitário da Fundação Educacional Inaciana (FEI) |
instacron_str |
FEI |
institution |
FEI |
reponame_str |
Biblioteca Digital de Teses e Dissertações da FEI |
collection |
Biblioteca Digital de Teses e Dissertações da FEI |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI) |
repository.mail.fl_str_mv |
cfernandes@fei.edu.br |
_version_ |
1809225180690513920 |