Aquisição de eletrocardiograma e classificação de arritmias por machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da FEI |
Texto Completo: | https://repositorio.fei.edu.br/handle/FEI/4579 |
Resumo: | Esse projeto apresenta uma proposta de um dispositivo para monitoração cardíaca pessoal. O dispositivo foi desenvolvido aplicando técnicas de Inteligência Artificial (aprendizado de máquina) para o reconhecimento de arritmias. O dispositivo informará, por meio de um e-mail, a detecção da possível arritmia à um médico ou pessoa credenciada, de modo que possa agilizar ou antecipar, um atendimento de emergência. Segundo a classificação da AAMI (Association for the Advancement of Medical Instrumentation) foram selecionadas 4 classes, sendo Normal (N), Supraventricular ectópico (SVE), Ventricular ectópico (VE) e Fusão de normal e ventriculares (F). Utilizando a base de dados MIT-BIH Arrhythmia Database e o aplicativo (app) Classification Learner do Matlab, para o treinamento, foi possível investigar vários modelos, sendo que os melhores foram o Ensemble (SubspaceKNN) e o SVM (Cubic SVM) com acurácias de 94% e 94,1%, respectivamente. Esses modelos foram selecionados para a etapa de teste, tendo o modelo Ensemble (SubspaceKNN) obtido a melhor acurácia (74,4%) e posteriormente sendo utilizado para a implementação no aplicativo de interface do usuário. Desta forma, sua implantação contribui para o desenvolvimento de inovação científicotecnológica, à medida que o equipamento apresenta características que ainda não foram totalmente implementadas no mercado e causa impacto no âmbito social, tornando-o acessível, sem a necessidade de um serviço de monitoração contínuo contratado pelo paciente. |
id |
FEI_4932953d8484882ae642c11f844eb33a |
---|---|
oai_identifier_str |
oai:repositorio.fei.edu.br:FEI/4579 |
network_acronym_str |
FEI |
network_name_str |
Biblioteca Digital de Teses e Dissertações da FEI |
repository_id_str |
https://repositorio.fei.edu.br/oai/request |
spelling |
Aquisição de eletrocardiograma e classificação de arritmias por machine learningECGmachine learningarritmiaMATLABarrhythmiaEsse projeto apresenta uma proposta de um dispositivo para monitoração cardíaca pessoal. O dispositivo foi desenvolvido aplicando técnicas de Inteligência Artificial (aprendizado de máquina) para o reconhecimento de arritmias. O dispositivo informará, por meio de um e-mail, a detecção da possível arritmia à um médico ou pessoa credenciada, de modo que possa agilizar ou antecipar, um atendimento de emergência. Segundo a classificação da AAMI (Association for the Advancement of Medical Instrumentation) foram selecionadas 4 classes, sendo Normal (N), Supraventricular ectópico (SVE), Ventricular ectópico (VE) e Fusão de normal e ventriculares (F). Utilizando a base de dados MIT-BIH Arrhythmia Database e o aplicativo (app) Classification Learner do Matlab, para o treinamento, foi possível investigar vários modelos, sendo que os melhores foram o Ensemble (SubspaceKNN) e o SVM (Cubic SVM) com acurácias de 94% e 94,1%, respectivamente. Esses modelos foram selecionados para a etapa de teste, tendo o modelo Ensemble (SubspaceKNN) obtido a melhor acurácia (74,4%) e posteriormente sendo utilizado para a implementação no aplicativo de interface do usuário. Desta forma, sua implantação contribui para o desenvolvimento de inovação científicotecnológica, à medida que o equipamento apresenta características que ainda não foram totalmente implementadas no mercado e causa impacto no âmbito social, tornando-o acessível, sem a necessidade de um serviço de monitoração contínuo contratado pelo paciente.This project presents a proposal for a device for personal cardiac monitoring. The device was developed by applying Artificial Intelligence (machine learning) techniques for the recognition of arrhythmias. The device will inform, by means of an e-mail, the detection of the possible arrhythmia to a doctor or accredited person, so that he can speed up or anticipate an emergency care. According to the AAMI (Association for the Advancement of Medical Instrumentation) classification, 4 classes were selected, being Normal (N), Supraventricular ectopic (SVE), Ventricular ectopic (LV) and Fusion of normal and ventricular (F). Using the MIT-BIH Arrhythmia Database and the application (app) Classification Learner from Matlab, for training, it was possible to investigate several models, the best of which were the Ensemble (SubspaceKNN) and the SVM (Cubic SVM) with accuracies of 94% and 94.1%, respectively. These models were selected for the test stage, and the Ensemble model (SubspaceKNN) obtained the best accuracy (74.4%) and was later used for implementation in the user interface application. In this way, its implementation contributes to the development of scientific-technological innovation, as the equipment presents characteristics that have not yet been fully implemented in the market and causes an impact on the social sphere, making it accessible, without the need for a monitoring service. continuous contracted by the patient.Centro Universitário FEICastro, Maria Claudia F.http://lattes.cnpq.br/7429780004238103Silva, César NogueiraMatos, Jefferson AlmeidaLopes, Fernanda Ferrezi2022-09-05T20:28:22Z2022-09-05T20:28:22Z2022-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesis73application/pdfapplication/pdfapplication/pdfhttps://repositorio.fei.edu.br/handle/FEI/4579info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEI2023-03-14T12:54:35Zoai:repositorio.fei.edu.br:FEI/4579Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2023-03-14T12:54:35Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false |
dc.title.none.fl_str_mv |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
title |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
spellingShingle |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning Silva, César Nogueira ECG machine learning arritmia MATLAB arrhythmia |
title_short |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
title_full |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
title_fullStr |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
title_full_unstemmed |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
title_sort |
Aquisição de eletrocardiograma e classificação de arritmias por machine learning |
author |
Silva, César Nogueira |
author_facet |
Silva, César Nogueira Matos, Jefferson Almeida Lopes, Fernanda Ferrezi |
author_role |
author |
author2 |
Matos, Jefferson Almeida Lopes, Fernanda Ferrezi |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Castro, Maria Claudia F. http://lattes.cnpq.br/7429780004238103 |
dc.contributor.author.fl_str_mv |
Silva, César Nogueira Matos, Jefferson Almeida Lopes, Fernanda Ferrezi |
dc.subject.por.fl_str_mv |
ECG machine learning arritmia MATLAB arrhythmia |
topic |
ECG machine learning arritmia MATLAB arrhythmia |
description |
Esse projeto apresenta uma proposta de um dispositivo para monitoração cardíaca pessoal. O dispositivo foi desenvolvido aplicando técnicas de Inteligência Artificial (aprendizado de máquina) para o reconhecimento de arritmias. O dispositivo informará, por meio de um e-mail, a detecção da possível arritmia à um médico ou pessoa credenciada, de modo que possa agilizar ou antecipar, um atendimento de emergência. Segundo a classificação da AAMI (Association for the Advancement of Medical Instrumentation) foram selecionadas 4 classes, sendo Normal (N), Supraventricular ectópico (SVE), Ventricular ectópico (VE) e Fusão de normal e ventriculares (F). Utilizando a base de dados MIT-BIH Arrhythmia Database e o aplicativo (app) Classification Learner do Matlab, para o treinamento, foi possível investigar vários modelos, sendo que os melhores foram o Ensemble (SubspaceKNN) e o SVM (Cubic SVM) com acurácias de 94% e 94,1%, respectivamente. Esses modelos foram selecionados para a etapa de teste, tendo o modelo Ensemble (SubspaceKNN) obtido a melhor acurácia (74,4%) e posteriormente sendo utilizado para a implementação no aplicativo de interface do usuário. Desta forma, sua implantação contribui para o desenvolvimento de inovação científicotecnológica, à medida que o equipamento apresenta características que ainda não foram totalmente implementadas no mercado e causa impacto no âmbito social, tornando-o acessível, sem a necessidade de um serviço de monitoração contínuo contratado pelo paciente. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-05T20:28:22Z 2022-09-05T20:28:22Z 2022-08-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.fei.edu.br/handle/FEI/4579 |
url |
https://repositorio.fei.edu.br/handle/FEI/4579 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
73 application/pdf application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da FEI instname:Centro Universitário da Fundação Educacional Inaciana (FEI) instacron:FEI |
instname_str |
Centro Universitário da Fundação Educacional Inaciana (FEI) |
instacron_str |
FEI |
institution |
FEI |
reponame_str |
Biblioteca Digital de Teses e Dissertações da FEI |
collection |
Biblioteca Digital de Teses e Dissertações da FEI |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI) |
repository.mail.fl_str_mv |
cfernandes@fei.edu.br |
_version_ |
1809225179064172544 |