Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados

Detalhes bibliográficos
Autor(a) principal: Frezzato, Miguel
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da FEI
Texto Completo: https://repositorio.fei.edu.br/handle/FEI/5227
https://doi.org/10.31414/EE.2023.D.131678
Resumo: Com o constante aumento de usuários conectados à Internet, um grande volume de dados tem sido gerado a partir de várias redes. Em vista disso, a segurança cibernética está sendo cada vez mais afetada, havendo grande necessidade de estudos científicos na área. Sistemas de detecção de intrusão (IDS) cada vez mais robustos são constantemente desenvolvidos, visando proteger os dados que são trafegados nas redes. Estes sistemas analisam as características de fluxo de cada dispositivo na rede para identificar uma possível instrusão. Selecionar apenas as características que mais se relacionam com as intrusões influencia diretamente na velocidade da análise, além de auxiliar os classificadores a tomar decisões precisas ao identificar uma intrusão. Por outro lado, o desenvolvimento do aprendizado de máquina e de algoritmos de otimização inspirados na natureza têm impulsionado o avanço de diversas áreas tecnológicas. Assim, o presente trabalho apresenta uma metodologia de análise dessas características utilizando uma combinação de aprendizado de máquina e algoritmos bio-inspirados para detecção eficiente de intrusões na rede. Os resultados experimentais mostram que o método proposto aumenta a acurácia e a taxa de detecção do IDS, além de diminuir a taxa de falsos alarmes. Além disso, o método se mostrou competitivo com os principais trabalhos relacionados do estado da arte com desempenho semelhante ou superiror nas bases de dados NSL-KDD e UNSW-NB15
id FEI_a911b9844af2b913e092adc623887d35
oai_identifier_str oai:repositorio.fei.edu.br:FEI/5227
network_acronym_str FEI
network_name_str Biblioteca Digital de Teses e Dissertações da FEI
repository_id_str https://repositorio.fei.edu.br/oai/request
spelling Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspiradosAlgoritmos bio-inspiradosSistema de detecção de intrusãoSegurança cibernéticaCom o constante aumento de usuários conectados à Internet, um grande volume de dados tem sido gerado a partir de várias redes. Em vista disso, a segurança cibernética está sendo cada vez mais afetada, havendo grande necessidade de estudos científicos na área. Sistemas de detecção de intrusão (IDS) cada vez mais robustos são constantemente desenvolvidos, visando proteger os dados que são trafegados nas redes. Estes sistemas analisam as características de fluxo de cada dispositivo na rede para identificar uma possível instrusão. Selecionar apenas as características que mais se relacionam com as intrusões influencia diretamente na velocidade da análise, além de auxiliar os classificadores a tomar decisões precisas ao identificar uma intrusão. Por outro lado, o desenvolvimento do aprendizado de máquina e de algoritmos de otimização inspirados na natureza têm impulsionado o avanço de diversas áreas tecnológicas. Assim, o presente trabalho apresenta uma metodologia de análise dessas características utilizando uma combinação de aprendizado de máquina e algoritmos bio-inspirados para detecção eficiente de intrusões na rede. Os resultados experimentais mostram que o método proposto aumenta a acurácia e a taxa de detecção do IDS, além de diminuir a taxa de falsos alarmes. Além disso, o método se mostrou competitivo com os principais trabalhos relacionados do estado da arte com desempenho semelhante ou superiror nas bases de dados NSL-KDD e UNSW-NB15With the constant increase of users connected to the internet, a large volume of data is generated from various networks. Because of this, cybersecurity is being increasingly affected, with a great need for scientific studies in the area. Intrusion detection systems (IDS) are increasingly robust and constantly being developed to protect data that is transmitted over networks. These systems analyze the flow features of each user on the network to identify a possible intrusion. Selecting only the features that are most related to the intrusions influences the speed of the analysis, in addition to helping the classifiers to make accurate decisions when identifying an intrusion. On the other hand, the development of machine learning and optimization algorithms inspired by nature has driven the advancement of several technological areas. Thus, this work presents a methodology for analyzing these characteristics using a combination of machine learning and bio-inspired algorithms for efficient detection of network intrusions. The experimental results show that the proposed method increases the accuracy and detection rate of the IDS and decreases the false alarm rate. In addition, the method proved to be competitive with the main state-of-the-art related works with similar or superior performance in the NSL-KDD and UNSW-NB15 datasetsCentro Universitário FEI, São Bernardo do CampoRodrigues, Paulo Sérgio SilvaFrezzato, Miguel2024-01-10T15:48:49Z2024-01-10T15:48:49Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFREZZATO, Miguel. <b> Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados. </b> 2023. 70 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EE.2023.D.131678.https://repositorio.fei.edu.br/handle/FEI/5227https://doi.org/10.31414/EE.2023.D.131678porpt_BRreponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEIinfo:eu-repo/semantics/openAccess2024-03-01T22:48:34Zoai:repositorio.fei.edu.br:FEI/5227Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2024-03-01T22:48:34Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false
dc.title.none.fl_str_mv Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
title Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
spellingShingle Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
Frezzato, Miguel
Algoritmos bio-inspirados
Sistema de detecção de intrusão
Segurança cibernética
title_short Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
title_full Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
title_fullStr Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
title_full_unstemmed Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
title_sort Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados
author Frezzato, Miguel
author_facet Frezzato, Miguel
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Paulo Sérgio Silva
dc.contributor.author.fl_str_mv Frezzato, Miguel
dc.subject.por.fl_str_mv Algoritmos bio-inspirados
Sistema de detecção de intrusão
Segurança cibernética
topic Algoritmos bio-inspirados
Sistema de detecção de intrusão
Segurança cibernética
description Com o constante aumento de usuários conectados à Internet, um grande volume de dados tem sido gerado a partir de várias redes. Em vista disso, a segurança cibernética está sendo cada vez mais afetada, havendo grande necessidade de estudos científicos na área. Sistemas de detecção de intrusão (IDS) cada vez mais robustos são constantemente desenvolvidos, visando proteger os dados que são trafegados nas redes. Estes sistemas analisam as características de fluxo de cada dispositivo na rede para identificar uma possível instrusão. Selecionar apenas as características que mais se relacionam com as intrusões influencia diretamente na velocidade da análise, além de auxiliar os classificadores a tomar decisões precisas ao identificar uma intrusão. Por outro lado, o desenvolvimento do aprendizado de máquina e de algoritmos de otimização inspirados na natureza têm impulsionado o avanço de diversas áreas tecnológicas. Assim, o presente trabalho apresenta uma metodologia de análise dessas características utilizando uma combinação de aprendizado de máquina e algoritmos bio-inspirados para detecção eficiente de intrusões na rede. Os resultados experimentais mostram que o método proposto aumenta a acurácia e a taxa de detecção do IDS, além de diminuir a taxa de falsos alarmes. Além disso, o método se mostrou competitivo com os principais trabalhos relacionados do estado da arte com desempenho semelhante ou superiror nas bases de dados NSL-KDD e UNSW-NB15
publishDate 2023
dc.date.none.fl_str_mv 2023
2024-01-10T15:48:49Z
2024-01-10T15:48:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FREZZATO, Miguel. <b> Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados. </b> 2023. 70 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EE.2023.D.131678.
https://repositorio.fei.edu.br/handle/FEI/5227
https://doi.org/10.31414/EE.2023.D.131678
identifier_str_mv FREZZATO, Miguel. <b> Análise de características de navegação em redes para a detecção de intrusão com base em algoritmos bio-inspirados. </b> 2023. 70 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2023. Disponível em: https://doi.org/10.31414/EE.2023.D.131678.
url https://repositorio.fei.edu.br/handle/FEI/5227
https://doi.org/10.31414/EE.2023.D.131678
dc.language.iso.fl_str_mv por
pt_BR
language por
language_invalid_str_mv pt_BR
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da FEI
instname:Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron:FEI
instname_str Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron_str FEI
institution FEI
reponame_str Biblioteca Digital de Teses e Dissertações da FEI
collection Biblioteca Digital de Teses e Dissertações da FEI
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)
repository.mail.fl_str_mv cfernandes@fei.edu.br
_version_ 1809225176662933504