Segmentação de imagens coloridas utilizando algoritmos bioinspirados

Detalhes bibliográficos
Autor(a) principal: Conforto, Victor Henrique
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da FEI
Texto Completo: https://repositorio.fei.edu.br/handle/FEI/284
Resumo: Segmentação de imagens é uma das áreas mais antigas de visão computacional, com muitos problemas bem definidos e várias soluções propostas bem aceitas. No entanto ainda há muito trabalho a ser feito, sobretudo em segmentação de imagens coloridas, devido à demanda por mais aplicações. Recentemente, duas novas tecnologias têm se destacado na área. O estudo de análise de imagens sob o ponto de vista da estatística não-extensiva e a utilização de algoritmos bio-inspirados para lidar com problemas que demandam multi-limiarização, geralmente computacionalmente inviáveis quando o espaço de busca é histogrâmico. Assim, a proposta desta dissertação é o estudo de um novo método baseado em enxame de partículas, recentemente proposto na literatura e chamado de Firefly, juntamente com Kernel entrópico não extensivo para a multilimiarização de imagens espectrais. Os resultados obtidos mostram que o metodo proposto utilizando o algoritmo firefly segmentando a imagem baseado apenas na dimensão H de HSV obteve o melhor resultado dentre os experimentos realizados. Este trabalho aborda ainda a comparação entre o uso de diferentes espaços de cores, parâmetros e filtros para a segmentação de imagens coloridas.
id FEI_d75a22dd04f51feb0dd6323afcc82f82
oai_identifier_str oai:repositorio.fei.edu.br:FEI/284
network_acronym_str FEI
network_name_str Biblioteca Digital de Teses e Dissertações da FEI
repository_id_str https://repositorio.fei.edu.br/oai/request
spelling Segmentação de imagens coloridas utilizando algoritmos bioinspiradosImagens-InterpretaçãoAlgoritmos de computadorSegmentação de imagens é uma das áreas mais antigas de visão computacional, com muitos problemas bem definidos e várias soluções propostas bem aceitas. No entanto ainda há muito trabalho a ser feito, sobretudo em segmentação de imagens coloridas, devido à demanda por mais aplicações. Recentemente, duas novas tecnologias têm se destacado na área. O estudo de análise de imagens sob o ponto de vista da estatística não-extensiva e a utilização de algoritmos bio-inspirados para lidar com problemas que demandam multi-limiarização, geralmente computacionalmente inviáveis quando o espaço de busca é histogrâmico. Assim, a proposta desta dissertação é o estudo de um novo método baseado em enxame de partículas, recentemente proposto na literatura e chamado de Firefly, juntamente com Kernel entrópico não extensivo para a multilimiarização de imagens espectrais. Os resultados obtidos mostram que o metodo proposto utilizando o algoritmo firefly segmentando a imagem baseado apenas na dimensão H de HSV obteve o melhor resultado dentre os experimentos realizados. Este trabalho aborda ainda a comparação entre o uso de diferentes espaços de cores, parâmetros e filtros para a segmentação de imagens coloridas.Image segmentation is one of the oldest areas of computer vision, with many welldefined problems and several well-accepted proposed solutions. However there is still a lot of work to be done, especially in color image segmentation, due to the demand for more applications. Recently, two new technologies have stood out in the area. The study of image analysis from the point of view of non-extensive statistics and the use of bio-inspired algorithms to deal with problems that require multi-thresholding, usually computationally unviable when the search space is histogrammic. Thus, the proposal of this dissertation is the study of a new method based on swarms of particles, recently proposed in the literature and called "Firefly", together with non-extensive entropic kernel for the multilimiarization of spectral images. The results show that the proposed method using the firefly algorithm segmenting the image based on the HSV H-dimension only obtained the best result among the experiments. This work also discusses the comparison between the use of different color spaces, parameters and filters for the segmentation of colored imagesCentro Universitário FEI, São Bernardo do CampoSantos, Paulo EduardoConforto, Victor Henrique2019-03-15T17:49:22Z2019-03-15T17:49:22Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCONFORTO, Victor Henrique. <b> Segmentação de imagens coloridas utilizando algoritmos bioinspirados. </b> 2017. 72 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2017. Disponível em: <https://doi.org/10.31414/EE.2017.D.129009>. Acesso em: 6 ago. 2018.https://repositorio.fei.edu.br/handle/FEI/28410.31414/EE.2017.D.129009porpt_BRreponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEIinfo:eu-repo/semantics/openAccess2024-03-01T22:48:18Zoai:repositorio.fei.edu.br:FEI/284Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2024-03-01T22:48:18Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false
dc.title.none.fl_str_mv Segmentação de imagens coloridas utilizando algoritmos bioinspirados
title Segmentação de imagens coloridas utilizando algoritmos bioinspirados
spellingShingle Segmentação de imagens coloridas utilizando algoritmos bioinspirados
Conforto, Victor Henrique
Imagens-Interpretação
Algoritmos de computador
title_short Segmentação de imagens coloridas utilizando algoritmos bioinspirados
title_full Segmentação de imagens coloridas utilizando algoritmos bioinspirados
title_fullStr Segmentação de imagens coloridas utilizando algoritmos bioinspirados
title_full_unstemmed Segmentação de imagens coloridas utilizando algoritmos bioinspirados
title_sort Segmentação de imagens coloridas utilizando algoritmos bioinspirados
author Conforto, Victor Henrique
author_facet Conforto, Victor Henrique
author_role author
dc.contributor.none.fl_str_mv Santos, Paulo Eduardo
dc.contributor.author.fl_str_mv Conforto, Victor Henrique
dc.subject.por.fl_str_mv Imagens-Interpretação
Algoritmos de computador
topic Imagens-Interpretação
Algoritmos de computador
description Segmentação de imagens é uma das áreas mais antigas de visão computacional, com muitos problemas bem definidos e várias soluções propostas bem aceitas. No entanto ainda há muito trabalho a ser feito, sobretudo em segmentação de imagens coloridas, devido à demanda por mais aplicações. Recentemente, duas novas tecnologias têm se destacado na área. O estudo de análise de imagens sob o ponto de vista da estatística não-extensiva e a utilização de algoritmos bio-inspirados para lidar com problemas que demandam multi-limiarização, geralmente computacionalmente inviáveis quando o espaço de busca é histogrâmico. Assim, a proposta desta dissertação é o estudo de um novo método baseado em enxame de partículas, recentemente proposto na literatura e chamado de Firefly, juntamente com Kernel entrópico não extensivo para a multilimiarização de imagens espectrais. Os resultados obtidos mostram que o metodo proposto utilizando o algoritmo firefly segmentando a imagem baseado apenas na dimensão H de HSV obteve o melhor resultado dentre os experimentos realizados. Este trabalho aborda ainda a comparação entre o uso de diferentes espaços de cores, parâmetros e filtros para a segmentação de imagens coloridas.
publishDate 2017
dc.date.none.fl_str_mv 2017
2019-03-15T17:49:22Z
2019-03-15T17:49:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CONFORTO, Victor Henrique. <b> Segmentação de imagens coloridas utilizando algoritmos bioinspirados. </b> 2017. 72 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2017. Disponível em: <https://doi.org/10.31414/EE.2017.D.129009>. Acesso em: 6 ago. 2018.
https://repositorio.fei.edu.br/handle/FEI/284
10.31414/EE.2017.D.129009
identifier_str_mv CONFORTO, Victor Henrique. <b> Segmentação de imagens coloridas utilizando algoritmos bioinspirados. </b> 2017. 72 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2017. Disponível em: <https://doi.org/10.31414/EE.2017.D.129009>. Acesso em: 6 ago. 2018.
10.31414/EE.2017.D.129009
url https://repositorio.fei.edu.br/handle/FEI/284
dc.language.iso.fl_str_mv por
pt_BR
language por
language_invalid_str_mv pt_BR
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
publisher.none.fl_str_mv Centro Universitário FEI, São Bernardo do Campo
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da FEI
instname:Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron:FEI
instname_str Centro Universitário da Fundação Educacional Inaciana (FEI)
instacron_str FEI
institution FEI
reponame_str Biblioteca Digital de Teses e Dissertações da FEI
collection Biblioteca Digital de Teses e Dissertações da FEI
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)
repository.mail.fl_str_mv cfernandes@fei.edu.br
_version_ 1809225181878550528