Machine learning methods for vessel type classification with underwater acoustic data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da FEI |
Texto Completo: | https://repositorio.fei.edu.br/handle/FEI/4674 https://doi.org/10.31414/EE.2022.D.131558 |
Resumo: | A identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicos |
id |
FEI_ec9c5da5fbbfa78d6ad1798b14dcedab |
---|---|
oai_identifier_str |
oai:repositorio.fei.edu.br:FEI/4674 |
network_acronym_str |
FEI |
network_name_str |
Biblioteca Digital de Teses e Dissertações da FEI |
repository_id_str |
https://repositorio.fei.edu.br/oai/request |
spelling |
Machine learning methods for vessel type classification with underwater acoustic dataDeep learningAcústicaHidrofonesA identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicosVesselidentificationinacontrolledtrafficenvironmentcanbebeneficialforbiodiversity maintenance andcoastalenvironmentsurveillanceinprotectedregions,generatingcontributions to thelocalcommunityandtheecosystem.Inthiscontext,thereisalatentneedforbetter techniquesforidentifyingandclassifyingvessels,providingmechanismstoimprovethesesystems. Underwatersoundsignalsaremorechallengingtobemaskedoromitted,duringthenavigationof a vessel,whencomparedtootherdatasources,providingareliableandfraud-resistantsourcefor classification systems,however,theysufferinterferencefromtheconditionsoftheenvironment in whichtheyareused.Inthiswork,amethodologywasproposedtoperformtheunderwater acousticclassification,usingsignalsproducedbyvessels,usingmachinelearningtechniques, and alsoconsideringenvironmentalvariables,suchasthedistancebetweenthehydrophonesand the targetvessels.Acomparisonregardingtheperformanceofthemostcommonconvolutional neural networkswasperformedusingtheVGGandResNet18architectures.Comparisonswere also madebetweenthethreepreprocessingfilterscommonlypresentintheliterature,theMel spectrograms,theGammafilters,andtheconstantQtransform,providingastudyontheimpact of suchvariablesinthefinalclassification.Duetothescarcityofannotateddatasetstostudythis problem, anannotateddatasetwasproposedbasedonthesoundsignalsoftheOceanCanada Networkinitiative.Theresultsobtainedreachedtheaccuracyof94.95%ontheproposeddataset using CQTasthepreprocessingfilterforaResNet-basedconvolutionalneuralnetwork.The source codesforreproducingthetests,aswellasforobtainingthedataset,arefreelyandpublicly available for academic purposesCentro Universitário FEI, São Bernardo do CampoSantos, Paulo EduardoDomingos, Lucas Cesar Ferreira2023-01-09T01:12:39Z2023-01-09T01:12:39Z2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfDOMINGOS, Lucas Cesar Ferreira. <b> Machine learning methods for vessel type classification with underwater acoustic data. </b> 2022. 89 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2022. Disponível em: https://doi.org/10.31414/EE.2022.D.131558.https://repositorio.fei.edu.br/handle/FEI/4674https://doi.org/10.31414/EE.2022.D.131558engen_USInteligência Artificial Aplicada à Automação e Robóticareponame:Biblioteca Digital de Teses e Dissertações da FEIinstname:Centro Universitário da Fundação Educacional Inaciana (FEI)instacron:FEIinfo:eu-repo/semantics/openAccess2024-03-01T22:47:57Zoai:repositorio.fei.edu.br:FEI/4674Biblioteca Digital de Teses e Dissertaçõeshttp://sofia.fei.edu.br/pergamum/biblioteca/PRIhttp://sofia.fei.edu.br/pergamum/oai/oai2.phpcfernandes@fei.edu.bropendoar:https://repositorio.fei.edu.br/oai/request2024-03-01T22:47:57Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI)false |
dc.title.none.fl_str_mv |
Machine learning methods for vessel type classification with underwater acoustic data |
title |
Machine learning methods for vessel type classification with underwater acoustic data |
spellingShingle |
Machine learning methods for vessel type classification with underwater acoustic data Domingos, Lucas Cesar Ferreira Deep learning Acústica Hidrofones |
title_short |
Machine learning methods for vessel type classification with underwater acoustic data |
title_full |
Machine learning methods for vessel type classification with underwater acoustic data |
title_fullStr |
Machine learning methods for vessel type classification with underwater acoustic data |
title_full_unstemmed |
Machine learning methods for vessel type classification with underwater acoustic data |
title_sort |
Machine learning methods for vessel type classification with underwater acoustic data |
author |
Domingos, Lucas Cesar Ferreira |
author_facet |
Domingos, Lucas Cesar Ferreira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Paulo Eduardo |
dc.contributor.author.fl_str_mv |
Domingos, Lucas Cesar Ferreira |
dc.subject.por.fl_str_mv |
Deep learning Acústica Hidrofones |
topic |
Deep learning Acústica Hidrofones |
description |
A identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicos |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-01-09T01:12:39Z 2023-01-09T01:12:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
DOMINGOS, Lucas Cesar Ferreira. <b> Machine learning methods for vessel type classification with underwater acoustic data. </b> 2022. 89 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2022. Disponível em: https://doi.org/10.31414/EE.2022.D.131558. https://repositorio.fei.edu.br/handle/FEI/4674 https://doi.org/10.31414/EE.2022.D.131558 |
identifier_str_mv |
DOMINGOS, Lucas Cesar Ferreira. <b> Machine learning methods for vessel type classification with underwater acoustic data. </b> 2022. 89 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2022. Disponível em: https://doi.org/10.31414/EE.2022.D.131558. |
url |
https://repositorio.fei.edu.br/handle/FEI/4674 https://doi.org/10.31414/EE.2022.D.131558 |
dc.language.iso.fl_str_mv |
eng en_US |
language |
eng |
language_invalid_str_mv |
en_US |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
Inteligência Artificial Aplicada à Automação e Robótica |
dc.publisher.none.fl_str_mv |
Centro Universitário FEI, São Bernardo do Campo |
publisher.none.fl_str_mv |
Centro Universitário FEI, São Bernardo do Campo |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da FEI instname:Centro Universitário da Fundação Educacional Inaciana (FEI) instacron:FEI |
instname_str |
Centro Universitário da Fundação Educacional Inaciana (FEI) |
instacron_str |
FEI |
institution |
FEI |
reponame_str |
Biblioteca Digital de Teses e Dissertações da FEI |
collection |
Biblioteca Digital de Teses e Dissertações da FEI |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da FEI - Centro Universitário da Fundação Educacional Inaciana (FEI) |
repository.mail.fl_str_mv |
cfernandes@fei.edu.br |
_version_ |
1809225178331217920 |