Heterogeneity test for optimising nickel sampling protocols
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | REM - International Engineering Journal |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000200171 |
Resumo: | Abstract Fundamental Sampling Error (FSE) is generated whenever a sample is taken from a lot of particulate material and is caused by an intrinsic characteristic of every mineral deposit: the constitutional or intrinsic heterogeneity of the ore. FSE is the only error that can never be eliminated in sampling processes, but it can be reduced to acceptable values. The optimisation of sampling protocols is based on the minimisation of FSE and is essential to reduce the deviations of grade estimates for mine planning, process control and mine-to-mill reconciliation. In order to calculate minimum sample masses and to optimise sampling protocols, heterogeneity studies have been developed. The original heterogeneity test (HT), proposed by Gy (1967) and Pitard (1993; 2009), is an experimental method of obtaining the intrinsic heterogeneity (IHL). Most of the heterogeneity studies available in Brazilian literature have been performed on gold deposits, which have higher intrinsic heterogeneity due to the nugget and cluster effects and low grades, unlike base metal deposits. Nickel ores have never been the focus of heterogeneity studies in Brazil or worldwide. Therefore, the factors that compose IHL have never been validated for nickel ores, which was the objective of this article. Based on the results of the heterogeneity test performed on a nickel ore from Niquelandia, Brazil, the standard deviations of FSE were calculated at each stage of the sampling protocol. An optimised protocol is proposed herein, in which the total deviation of FSE is below the maximum value recommended by Pierre Gy’s Theory of Sampling (TOS). |
id |
FG-1_0785b04c0002d2001339c26866b98726 |
---|---|
oai_identifier_str |
oai:scielo:S2448-167X2020000200171 |
network_acronym_str |
FG-1 |
network_name_str |
REM - International Engineering Journal |
repository_id_str |
|
spelling |
Heterogeneity test for optimising nickel sampling protocolsheterogeneity testsampling protocolTheory of SamplingAbstract Fundamental Sampling Error (FSE) is generated whenever a sample is taken from a lot of particulate material and is caused by an intrinsic characteristic of every mineral deposit: the constitutional or intrinsic heterogeneity of the ore. FSE is the only error that can never be eliminated in sampling processes, but it can be reduced to acceptable values. The optimisation of sampling protocols is based on the minimisation of FSE and is essential to reduce the deviations of grade estimates for mine planning, process control and mine-to-mill reconciliation. In order to calculate minimum sample masses and to optimise sampling protocols, heterogeneity studies have been developed. The original heterogeneity test (HT), proposed by Gy (1967) and Pitard (1993; 2009), is an experimental method of obtaining the intrinsic heterogeneity (IHL). Most of the heterogeneity studies available in Brazilian literature have been performed on gold deposits, which have higher intrinsic heterogeneity due to the nugget and cluster effects and low grades, unlike base metal deposits. Nickel ores have never been the focus of heterogeneity studies in Brazil or worldwide. Therefore, the factors that compose IHL have never been validated for nickel ores, which was the objective of this article. Based on the results of the heterogeneity test performed on a nickel ore from Niquelandia, Brazil, the standard deviations of FSE were calculated at each stage of the sampling protocol. An optimised protocol is proposed herein, in which the total deviation of FSE is below the maximum value recommended by Pierre Gy’s Theory of Sampling (TOS).Fundação Gorceix2020-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000200171REM - International Engineering Journal v.73 n.2 2020reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672019730030info:eu-repo/semantics/openAccessFernandes,Flavia de LimaVargas,Flavia Guimaraes Rocha Godinho CamposChieregati,Ana Carolinaeng2020-04-08T00:00:00Zoai:scielo:S2448-167X2020000200171Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2020-04-08T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false |
dc.title.none.fl_str_mv |
Heterogeneity test for optimising nickel sampling protocols |
title |
Heterogeneity test for optimising nickel sampling protocols |
spellingShingle |
Heterogeneity test for optimising nickel sampling protocols Fernandes,Flavia de Lima heterogeneity test sampling protocol Theory of Sampling |
title_short |
Heterogeneity test for optimising nickel sampling protocols |
title_full |
Heterogeneity test for optimising nickel sampling protocols |
title_fullStr |
Heterogeneity test for optimising nickel sampling protocols |
title_full_unstemmed |
Heterogeneity test for optimising nickel sampling protocols |
title_sort |
Heterogeneity test for optimising nickel sampling protocols |
author |
Fernandes,Flavia de Lima |
author_facet |
Fernandes,Flavia de Lima Vargas,Flavia Guimaraes Rocha Godinho Campos Chieregati,Ana Carolina |
author_role |
author |
author2 |
Vargas,Flavia Guimaraes Rocha Godinho Campos Chieregati,Ana Carolina |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fernandes,Flavia de Lima Vargas,Flavia Guimaraes Rocha Godinho Campos Chieregati,Ana Carolina |
dc.subject.por.fl_str_mv |
heterogeneity test sampling protocol Theory of Sampling |
topic |
heterogeneity test sampling protocol Theory of Sampling |
description |
Abstract Fundamental Sampling Error (FSE) is generated whenever a sample is taken from a lot of particulate material and is caused by an intrinsic characteristic of every mineral deposit: the constitutional or intrinsic heterogeneity of the ore. FSE is the only error that can never be eliminated in sampling processes, but it can be reduced to acceptable values. The optimisation of sampling protocols is based on the minimisation of FSE and is essential to reduce the deviations of grade estimates for mine planning, process control and mine-to-mill reconciliation. In order to calculate minimum sample masses and to optimise sampling protocols, heterogeneity studies have been developed. The original heterogeneity test (HT), proposed by Gy (1967) and Pitard (1993; 2009), is an experimental method of obtaining the intrinsic heterogeneity (IHL). Most of the heterogeneity studies available in Brazilian literature have been performed on gold deposits, which have higher intrinsic heterogeneity due to the nugget and cluster effects and low grades, unlike base metal deposits. Nickel ores have never been the focus of heterogeneity studies in Brazil or worldwide. Therefore, the factors that compose IHL have never been validated for nickel ores, which was the objective of this article. Based on the results of the heterogeneity test performed on a nickel ore from Niquelandia, Brazil, the standard deviations of FSE were calculated at each stage of the sampling protocol. An optimised protocol is proposed herein, in which the total deviation of FSE is below the maximum value recommended by Pierre Gy’s Theory of Sampling (TOS). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000200171 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000200171 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0370-44672019730030 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Fundação Gorceix |
publisher.none.fl_str_mv |
Fundação Gorceix |
dc.source.none.fl_str_mv |
REM - International Engineering Journal v.73 n.2 2020 reponame:REM - International Engineering Journal instname:Fundação Gorceix (FG) instacron:FG |
instname_str |
Fundação Gorceix (FG) |
instacron_str |
FG |
institution |
FG |
reponame_str |
REM - International Engineering Journal |
collection |
REM - International Engineering Journal |
repository.name.fl_str_mv |
REM - International Engineering Journal - Fundação Gorceix (FG) |
repository.mail.fl_str_mv |
||editor@rem.com.br |
_version_ |
1754734691467919360 |