Strategies used to control the costs of underground ventilation in some Brazilian mines

Detalhes bibliográficos
Autor(a) principal: Costa,Leandro de Vilhena
Data de Publicação: 2020
Outros Autores: Silva,José Margarida da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: REM - International Engineering Journal
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000400555
Resumo: Abstract In an underground mine, the ventilation is responsible for 25% to 50% of its electrical energy consumption. In countries such as South Africa, United States and Canada researchers have started to achieve a significant reduction in energy consumption without neglecting aspects of the quantity and quality of air required for the best performance of the system, in compliance with safety standards and worker comfort. In Brazil, on demand this ventilation application began in 2013 at the Ipueira mine (Bahia, controlled by Ferbasa company), and was soon after applied by the Cuiabá, Córrego do Sitio I and Lamego mines; all three mines administered by Anglo Gold Ashanti. Each mine adopted frequency inverters for the main ventilation, whereby the fan rotation is adjusted according to demand and speed drivers. This measure resulted in the saving of thousands of reais, since the flow is proportional to the velocity, the pressure is proportional to the square of the velocity, and the power is proportional to the cubed velocity. Therefore, a reduction of 20% in the flow will save about 50% of the energy required. The Cuiabá mine presents the most modern and automated system in the country. The fans are controlled and monitored through a control room. In addition, sensors scattered in the mine, control the required flow rate. The Lamego mine has a similar but simpler system. This article proposes to discuss the application and improvement of the process of ventilation on demand in Brazilian mines where this system is applied.
id FG-1_08479d47e46f1066764cbf2963f6962a
oai_identifier_str oai:scielo:S2448-167X2020000400555
network_acronym_str FG-1
network_name_str REM - International Engineering Journal
repository_id_str
spelling Strategies used to control the costs of underground ventilation in some Brazilian minesventilation on demandunderground minesystem of ventilationenergetic efficiencyenergy consumptionAbstract In an underground mine, the ventilation is responsible for 25% to 50% of its electrical energy consumption. In countries such as South Africa, United States and Canada researchers have started to achieve a significant reduction in energy consumption without neglecting aspects of the quantity and quality of air required for the best performance of the system, in compliance with safety standards and worker comfort. In Brazil, on demand this ventilation application began in 2013 at the Ipueira mine (Bahia, controlled by Ferbasa company), and was soon after applied by the Cuiabá, Córrego do Sitio I and Lamego mines; all three mines administered by Anglo Gold Ashanti. Each mine adopted frequency inverters for the main ventilation, whereby the fan rotation is adjusted according to demand and speed drivers. This measure resulted in the saving of thousands of reais, since the flow is proportional to the velocity, the pressure is proportional to the square of the velocity, and the power is proportional to the cubed velocity. Therefore, a reduction of 20% in the flow will save about 50% of the energy required. The Cuiabá mine presents the most modern and automated system in the country. The fans are controlled and monitored through a control room. In addition, sensors scattered in the mine, control the required flow rate. The Lamego mine has a similar but simpler system. This article proposes to discuss the application and improvement of the process of ventilation on demand in Brazilian mines where this system is applied.Fundação Gorceix2020-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000400555REM - International Engineering Journal v.73 n.4 2020reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672019730057info:eu-repo/semantics/openAccessCosta,Leandro de VilhenaSilva,José Margarida daeng2020-09-28T00:00:00Zoai:scielo:S2448-167X2020000400555Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2020-09-28T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false
dc.title.none.fl_str_mv Strategies used to control the costs of underground ventilation in some Brazilian mines
title Strategies used to control the costs of underground ventilation in some Brazilian mines
spellingShingle Strategies used to control the costs of underground ventilation in some Brazilian mines
Costa,Leandro de Vilhena
ventilation on demand
underground mine
system of ventilation
energetic efficiency
energy consumption
title_short Strategies used to control the costs of underground ventilation in some Brazilian mines
title_full Strategies used to control the costs of underground ventilation in some Brazilian mines
title_fullStr Strategies used to control the costs of underground ventilation in some Brazilian mines
title_full_unstemmed Strategies used to control the costs of underground ventilation in some Brazilian mines
title_sort Strategies used to control the costs of underground ventilation in some Brazilian mines
author Costa,Leandro de Vilhena
author_facet Costa,Leandro de Vilhena
Silva,José Margarida da
author_role author
author2 Silva,José Margarida da
author2_role author
dc.contributor.author.fl_str_mv Costa,Leandro de Vilhena
Silva,José Margarida da
dc.subject.por.fl_str_mv ventilation on demand
underground mine
system of ventilation
energetic efficiency
energy consumption
topic ventilation on demand
underground mine
system of ventilation
energetic efficiency
energy consumption
description Abstract In an underground mine, the ventilation is responsible for 25% to 50% of its electrical energy consumption. In countries such as South Africa, United States and Canada researchers have started to achieve a significant reduction in energy consumption without neglecting aspects of the quantity and quality of air required for the best performance of the system, in compliance with safety standards and worker comfort. In Brazil, on demand this ventilation application began in 2013 at the Ipueira mine (Bahia, controlled by Ferbasa company), and was soon after applied by the Cuiabá, Córrego do Sitio I and Lamego mines; all three mines administered by Anglo Gold Ashanti. Each mine adopted frequency inverters for the main ventilation, whereby the fan rotation is adjusted according to demand and speed drivers. This measure resulted in the saving of thousands of reais, since the flow is proportional to the velocity, the pressure is proportional to the square of the velocity, and the power is proportional to the cubed velocity. Therefore, a reduction of 20% in the flow will save about 50% of the energy required. The Cuiabá mine presents the most modern and automated system in the country. The fans are controlled and monitored through a control room. In addition, sensors scattered in the mine, control the required flow rate. The Lamego mine has a similar but simpler system. This article proposes to discuss the application and improvement of the process of ventilation on demand in Brazilian mines where this system is applied.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000400555
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000400555
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0370-44672019730057
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Fundação Gorceix
publisher.none.fl_str_mv Fundação Gorceix
dc.source.none.fl_str_mv REM - International Engineering Journal v.73 n.4 2020
reponame:REM - International Engineering Journal
instname:Fundação Gorceix (FG)
instacron:FG
instname_str Fundação Gorceix (FG)
instacron_str FG
institution FG
reponame_str REM - International Engineering Journal
collection REM - International Engineering Journal
repository.name.fl_str_mv REM - International Engineering Journal - Fundação Gorceix (FG)
repository.mail.fl_str_mv ||editor@rem.com.br
_version_ 1754734691841212416