Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry

Detalhes bibliográficos
Autor(a) principal: Lima,Neymayer Pereira
Data de Publicação: 2018
Outros Autores: Peres,Antônio Eduardo Clark, Gonçalves,Tatiane Aparecida Rocha
Tipo de documento: Artigo
Idioma: eng
Título da fonte: REM - International Engineering Journal
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000300437
Resumo: Abstract Flotation plays a relevant role in the concentration of iron ores. Conventional flotation technology employing mechanical machines and columns and also circuits combining both types of cells have been utilized in the iron ore industry. The top size of particles in the flotation circuit feed is 150 µm and the slimes below 10 µm are removed as overflow in hydrocyclone classification. The conventional flotation technology faces difficulties in achieving tailings with iron grades lower than 12% and concentrates with SiO2 grades lower than 1%, and requires long residence times, resulting in large volume machines and huge footprints. The pneumatic flotation technology was evaluated in the reverse flotation of quartz from an iron ore sample of the Iron Quadrangle, Brazil. Bench and industrial scale tests were conducted in pneumatic flotation machines at low residence time. Both tests were carried out in open circuit stages with the objective of comparison with mechanical cells. The bench scale tests were carried out in three stages (rougher, cleaner and recleaner) in an 11 L pneumatic cell aiming at final concentrate with maximum 2% SiO2 while the industrial tests were carried out in a 25 m3 pneumatic cell in the rougher stage aiming at comparison with a circuit of five 14 m3 cells in the rougher stage and four 14 m3 cells in the scavenger stage. The collision and particle-bubble adhesion occur in a step before the pulp reaches the pneumatic cell vessel. The results indicate the possibility of achieving concentrates with a SiO2 content of approximately 1% and tailings with iron contents lower than 10% with three stages (rougher, cleaner and recleaner) without the need of scavenger stages. Furthermore, the residence time was three times shorter than that required for conventional mechanical cells. The speed of the pulp at the entrance of the pneumatic cell strongly affects the quality of the concentrate.
id FG-1_f17e123cbf002389e87eef762e16a2a8
oai_identifier_str oai:scielo:S2448-167X2018000300437
network_acronym_str FG-1
network_name_str REM - International Engineering Journal
repository_id_str
spelling Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industryfroth flotationpneumatic flotationiron oreAbstract Flotation plays a relevant role in the concentration of iron ores. Conventional flotation technology employing mechanical machines and columns and also circuits combining both types of cells have been utilized in the iron ore industry. The top size of particles in the flotation circuit feed is 150 µm and the slimes below 10 µm are removed as overflow in hydrocyclone classification. The conventional flotation technology faces difficulties in achieving tailings with iron grades lower than 12% and concentrates with SiO2 grades lower than 1%, and requires long residence times, resulting in large volume machines and huge footprints. The pneumatic flotation technology was evaluated in the reverse flotation of quartz from an iron ore sample of the Iron Quadrangle, Brazil. Bench and industrial scale tests were conducted in pneumatic flotation machines at low residence time. Both tests were carried out in open circuit stages with the objective of comparison with mechanical cells. The bench scale tests were carried out in three stages (rougher, cleaner and recleaner) in an 11 L pneumatic cell aiming at final concentrate with maximum 2% SiO2 while the industrial tests were carried out in a 25 m3 pneumatic cell in the rougher stage aiming at comparison with a circuit of five 14 m3 cells in the rougher stage and four 14 m3 cells in the scavenger stage. The collision and particle-bubble adhesion occur in a step before the pulp reaches the pneumatic cell vessel. The results indicate the possibility of achieving concentrates with a SiO2 content of approximately 1% and tailings with iron contents lower than 10% with three stages (rougher, cleaner and recleaner) without the need of scavenger stages. Furthermore, the residence time was three times shorter than that required for conventional mechanical cells. The speed of the pulp at the entrance of the pneumatic cell strongly affects the quality of the concentrate.Fundação Gorceix2018-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000300437REM - International Engineering Journal v.71 n.3 2018reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672016710179info:eu-repo/semantics/openAccessLima,Neymayer PereiraPeres,Antônio Eduardo ClarkGonçalves,Tatiane Aparecida Rochaeng2018-06-14T00:00:00Zoai:scielo:S2448-167X2018000300437Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2018-06-14T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false
dc.title.none.fl_str_mv Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
title Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
spellingShingle Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
Lima,Neymayer Pereira
froth flotation
pneumatic flotation
iron ore
title_short Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
title_full Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
title_fullStr Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
title_full_unstemmed Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
title_sort Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry
author Lima,Neymayer Pereira
author_facet Lima,Neymayer Pereira
Peres,Antônio Eduardo Clark
Gonçalves,Tatiane Aparecida Rocha
author_role author
author2 Peres,Antônio Eduardo Clark
Gonçalves,Tatiane Aparecida Rocha
author2_role author
author
dc.contributor.author.fl_str_mv Lima,Neymayer Pereira
Peres,Antônio Eduardo Clark
Gonçalves,Tatiane Aparecida Rocha
dc.subject.por.fl_str_mv froth flotation
pneumatic flotation
iron ore
topic froth flotation
pneumatic flotation
iron ore
description Abstract Flotation plays a relevant role in the concentration of iron ores. Conventional flotation technology employing mechanical machines and columns and also circuits combining both types of cells have been utilized in the iron ore industry. The top size of particles in the flotation circuit feed is 150 µm and the slimes below 10 µm are removed as overflow in hydrocyclone classification. The conventional flotation technology faces difficulties in achieving tailings with iron grades lower than 12% and concentrates with SiO2 grades lower than 1%, and requires long residence times, resulting in large volume machines and huge footprints. The pneumatic flotation technology was evaluated in the reverse flotation of quartz from an iron ore sample of the Iron Quadrangle, Brazil. Bench and industrial scale tests were conducted in pneumatic flotation machines at low residence time. Both tests were carried out in open circuit stages with the objective of comparison with mechanical cells. The bench scale tests were carried out in three stages (rougher, cleaner and recleaner) in an 11 L pneumatic cell aiming at final concentrate with maximum 2% SiO2 while the industrial tests were carried out in a 25 m3 pneumatic cell in the rougher stage aiming at comparison with a circuit of five 14 m3 cells in the rougher stage and four 14 m3 cells in the scavenger stage. The collision and particle-bubble adhesion occur in a step before the pulp reaches the pneumatic cell vessel. The results indicate the possibility of achieving concentrates with a SiO2 content of approximately 1% and tailings with iron contents lower than 10% with three stages (rougher, cleaner and recleaner) without the need of scavenger stages. Furthermore, the residence time was three times shorter than that required for conventional mechanical cells. The speed of the pulp at the entrance of the pneumatic cell strongly affects the quality of the concentrate.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000300437
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2018000300437
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0370-44672016710179
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Fundação Gorceix
publisher.none.fl_str_mv Fundação Gorceix
dc.source.none.fl_str_mv REM - International Engineering Journal v.71 n.3 2018
reponame:REM - International Engineering Journal
instname:Fundação Gorceix (FG)
instacron:FG
instname_str Fundação Gorceix (FG)
instacron_str FG
institution FG
reponame_str REM - International Engineering Journal
collection REM - International Engineering Journal
repository.name.fl_str_mv REM - International Engineering Journal - Fundação Gorceix (FG)
repository.mail.fl_str_mv ||editor@rem.com.br
_version_ 1754734690978234368