A note on real estate appraisal in Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Economia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71402021000100029 |
Resumo: | Abstract Brazilian banks commonly use linear regression to appraise real estate: they regress price on features like area, location, etc, and use the resulting model to estimate the market value of the target property. But Brazilian banks do not test the predictive performance of those models, which for all we know are no better than random guesses. That introduces huge inefficiencies in the real estate market. Here we propose a machine learning approach to the problem. We use real estate data scraped from 15 thousand online listings and use it to fit a boosted trees model. The resulting model has a median absolute error of 8.16%. We provide all data and source code. |
id |
FGV-8_559135476cb940feda1296719d2b99a7 |
---|---|
oai_identifier_str |
oai:scielo:S0034-71402021000100029 |
network_acronym_str |
FGV-8 |
network_name_str |
Revista Brasileira de Economia (Online) |
repository_id_str |
|
spelling |
A note on real estate appraisal in Brazilreal estatehedonic pricingmarket behaviorAbstract Brazilian banks commonly use linear regression to appraise real estate: they regress price on features like area, location, etc, and use the resulting model to estimate the market value of the target property. But Brazilian banks do not test the predictive performance of those models, which for all we know are no better than random guesses. That introduces huge inefficiencies in the real estate market. Here we propose a machine learning approach to the problem. We use real estate data scraped from 15 thousand online listings and use it to fit a boosted trees model. The resulting model has a median absolute error of 8.16%. We provide all data and source code.Fundação Getúlio Vargas2021-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71402021000100029Revista Brasileira de Economia v.75 n.1 2021reponame:Revista Brasileira de Economia (Online)instname:Fundação Getulio Vargas (FGV)instacron:FGV10.5935/0034-7140.20210003info:eu-repo/semantics/openAccessMarzagão,ThiagoFerreira,RodrigoSales,Leonardoeng2021-07-07T00:00:00Zoai:scielo:S0034-71402021000100029Revistahttp://bibliotecadigital.fgv.br/ojs/index.php/rbe/issue/archivehttps://old.scielo.br/oai/scielo-oai.php||rbe@fgv.br1806-91340034-7140opendoar:2021-07-07T00:00Revista Brasileira de Economia (Online) - Fundação Getulio Vargas (FGV)false |
dc.title.none.fl_str_mv |
A note on real estate appraisal in Brazil |
title |
A note on real estate appraisal in Brazil |
spellingShingle |
A note on real estate appraisal in Brazil Marzagão,Thiago real estate hedonic pricing market behavior |
title_short |
A note on real estate appraisal in Brazil |
title_full |
A note on real estate appraisal in Brazil |
title_fullStr |
A note on real estate appraisal in Brazil |
title_full_unstemmed |
A note on real estate appraisal in Brazil |
title_sort |
A note on real estate appraisal in Brazil |
author |
Marzagão,Thiago |
author_facet |
Marzagão,Thiago Ferreira,Rodrigo Sales,Leonardo |
author_role |
author |
author2 |
Ferreira,Rodrigo Sales,Leonardo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Marzagão,Thiago Ferreira,Rodrigo Sales,Leonardo |
dc.subject.por.fl_str_mv |
real estate hedonic pricing market behavior |
topic |
real estate hedonic pricing market behavior |
description |
Abstract Brazilian banks commonly use linear regression to appraise real estate: they regress price on features like area, location, etc, and use the resulting model to estimate the market value of the target property. But Brazilian banks do not test the predictive performance of those models, which for all we know are no better than random guesses. That introduces huge inefficiencies in the real estate market. Here we propose a machine learning approach to the problem. We use real estate data scraped from 15 thousand online listings and use it to fit a boosted trees model. The resulting model has a median absolute error of 8.16%. We provide all data and source code. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71402021000100029 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0034-71402021000100029 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5935/0034-7140.20210003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Fundação Getúlio Vargas |
publisher.none.fl_str_mv |
Fundação Getúlio Vargas |
dc.source.none.fl_str_mv |
Revista Brasileira de Economia v.75 n.1 2021 reponame:Revista Brasileira de Economia (Online) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Revista Brasileira de Economia (Online) |
collection |
Revista Brasileira de Economia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Economia (Online) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
||rbe@fgv.br |
_version_ |
1754115906155315200 |