Estimation of the SIR model parameters using neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/31394 |
Resumo: | In the last decades, dengue fever has become the most prevalent epidemic disease caused by an arborvirus in the world. Its socio-economic impact has been especially overloading to developing countries, which struggle with the lack of appropriate resources and policies to contain the disease. Good planning has been essential to this end and dramatically benefits from outbreak forecasts. Over time, several deterministic and stochastic mathematical models of dengue epidemics have been proposed. However, the methods used to estimate their parameters usually require complex calculations and strong distributional assumptions that may not be realistic. The goal of this study was to develop a data-driven method to estimate the parameters of epidemiological models using Machine Learning and Artificial Neural Networks (ANNs) that could circumvent such demands. To accomplish this, we created a data set of infectives time series generated with SIR models using parameters derived from previous dengue epidemics and additional random noise. We used the data to train and validate several neural network configurations using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as the loss function. The test of the best models showed that the MAPE network tended to estimate SIR models that fitted the data better than the MSE network. We then applied the MAPE model to the time series of dengue epidemics that occurred in Brazilian state capitals between 2007 and 2020. The overall results indicate that ANN data-driven estimation methods can be used to fit a deterministic epidemiological model to noisy data, at least in cases where the dynamic processes that underlie the generation of observations are similar to those specified in the model. |
id |
FGV_2abd81364b45a869a0ad98ea9e4505f4 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/31394 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Moreno Junior, Valter de AssisEscolas::EMApCarvalho, Luiz Max Fagundes deCunha Junior, AméricoGomes, MarceloCoelho, Flávio Codeço2021-12-13T18:22:18Z2021-12-13T18:22:18Z2021-05-21https://hdl.handle.net/10438/31394In the last decades, dengue fever has become the most prevalent epidemic disease caused by an arborvirus in the world. Its socio-economic impact has been especially overloading to developing countries, which struggle with the lack of appropriate resources and policies to contain the disease. Good planning has been essential to this end and dramatically benefits from outbreak forecasts. Over time, several deterministic and stochastic mathematical models of dengue epidemics have been proposed. However, the methods used to estimate their parameters usually require complex calculations and strong distributional assumptions that may not be realistic. The goal of this study was to develop a data-driven method to estimate the parameters of epidemiological models using Machine Learning and Artificial Neural Networks (ANNs) that could circumvent such demands. To accomplish this, we created a data set of infectives time series generated with SIR models using parameters derived from previous dengue epidemics and additional random noise. We used the data to train and validate several neural network configurations using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as the loss function. The test of the best models showed that the MAPE network tended to estimate SIR models that fitted the data better than the MSE network. We then applied the MAPE model to the time series of dengue epidemics that occurred in Brazilian state capitals between 2007 and 2020. The overall results indicate that ANN data-driven estimation methods can be used to fit a deterministic epidemiological model to noisy data, at least in cases where the dynamic processes that underlie the generation of observations are similar to those specified in the model.engDengueEpidemicsArtificial neural networksEpidemiological modelsParameter estimationMatemáticaDengueEpidemias - Modelos matemáticosRedes neurais (Computação)Análise de séries temporaisAprendizado do computadorEstimation of the SIR model parameters using neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2021-05-21reponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTThesis_EMAp__complete.pdf.txtThesis_EMAp__complete.pdf.txtExtracted texttext/plain101062https://repositorio.fgv.br/bitstreams/37ce1cde-35f9-4a09-9c2c-e8324521efcc/download3525638ac34db877b3a942b37ff3f0ecMD55THUMBNAILThesis_EMAp__complete.pdf.jpgThesis_EMAp__complete.pdf.jpgGenerated Thumbnailimage/jpeg3285https://repositorio.fgv.br/bitstreams/b78ad10b-d2ef-4492-b730-e60bead0135c/download13fbcd27d1ac5623186b391197f5e667MD56ORIGINALThesis_EMAp__complete.pdfThesis_EMAp__complete.pdfPDFapplication/pdf16404882https://repositorio.fgv.br/bitstreams/068b1cf3-64ec-4568-bdda-f5ccd6c2a02a/downloadaa342baeedba82175fa37318fcc7903eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/3ccb6477-db5c-494e-a3a1-02931f1e6af1/downloaddfb340242cced38a6cca06c627998fa1MD5210438/313942023-11-25 11:34:16.099open.accessoai:repositorio.fgv.br:10438/31394https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T11:34:16Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Estimation of the SIR model parameters using neural networks |
title |
Estimation of the SIR model parameters using neural networks |
spellingShingle |
Estimation of the SIR model parameters using neural networks Moreno Junior, Valter de Assis Dengue Epidemics Artificial neural networks Epidemiological models Parameter estimation Matemática Dengue Epidemias - Modelos matemáticos Redes neurais (Computação) Análise de séries temporais Aprendizado do computador |
title_short |
Estimation of the SIR model parameters using neural networks |
title_full |
Estimation of the SIR model parameters using neural networks |
title_fullStr |
Estimation of the SIR model parameters using neural networks |
title_full_unstemmed |
Estimation of the SIR model parameters using neural networks |
title_sort |
Estimation of the SIR model parameters using neural networks |
author |
Moreno Junior, Valter de Assis |
author_facet |
Moreno Junior, Valter de Assis |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp |
dc.contributor.member.none.fl_str_mv |
Carvalho, Luiz Max Fagundes de Cunha Junior, Américo Gomes, Marcelo |
dc.contributor.author.fl_str_mv |
Moreno Junior, Valter de Assis |
dc.contributor.advisor1.fl_str_mv |
Coelho, Flávio Codeço |
contributor_str_mv |
Coelho, Flávio Codeço |
dc.subject.por.fl_str_mv |
Dengue |
topic |
Dengue Epidemics Artificial neural networks Epidemiological models Parameter estimation Matemática Dengue Epidemias - Modelos matemáticos Redes neurais (Computação) Análise de séries temporais Aprendizado do computador |
dc.subject.eng.fl_str_mv |
Epidemics Artificial neural networks Epidemiological models Parameter estimation |
dc.subject.area.por.fl_str_mv |
Matemática |
dc.subject.bibliodata.por.fl_str_mv |
Dengue Epidemias - Modelos matemáticos Redes neurais (Computação) Análise de séries temporais Aprendizado do computador |
description |
In the last decades, dengue fever has become the most prevalent epidemic disease caused by an arborvirus in the world. Its socio-economic impact has been especially overloading to developing countries, which struggle with the lack of appropriate resources and policies to contain the disease. Good planning has been essential to this end and dramatically benefits from outbreak forecasts. Over time, several deterministic and stochastic mathematical models of dengue epidemics have been proposed. However, the methods used to estimate their parameters usually require complex calculations and strong distributional assumptions that may not be realistic. The goal of this study was to develop a data-driven method to estimate the parameters of epidemiological models using Machine Learning and Artificial Neural Networks (ANNs) that could circumvent such demands. To accomplish this, we created a data set of infectives time series generated with SIR models using parameters derived from previous dengue epidemics and additional random noise. We used the data to train and validate several neural network configurations using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as the loss function. The test of the best models showed that the MAPE network tended to estimate SIR models that fitted the data better than the MSE network. We then applied the MAPE model to the time series of dengue epidemics that occurred in Brazilian state capitals between 2007 and 2020. The overall results indicate that ANN data-driven estimation methods can be used to fit a deterministic epidemiological model to noisy data, at least in cases where the dynamic processes that underlie the generation of observations are similar to those specified in the model. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-12-13T18:22:18Z |
dc.date.available.fl_str_mv |
2021-12-13T18:22:18Z |
dc.date.issued.fl_str_mv |
2021-05-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/31394 |
url |
https://hdl.handle.net/10438/31394 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/37ce1cde-35f9-4a09-9c2c-e8324521efcc/download https://repositorio.fgv.br/bitstreams/b78ad10b-d2ef-4492-b730-e60bead0135c/download https://repositorio.fgv.br/bitstreams/068b1cf3-64ec-4568-bdda-f5ccd6c2a02a/download https://repositorio.fgv.br/bitstreams/3ccb6477-db5c-494e-a3a1-02931f1e6af1/download |
bitstream.checksum.fl_str_mv |
3525638ac34db877b3a942b37ff3f0ec 13fbcd27d1ac5623186b391197f5e667 aa342baeedba82175fa37318fcc7903e dfb340242cced38a6cca06c627998fa1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797639737573376 |