Estimation of the SIR model parameters using neural networks

Detalhes bibliográficos
Autor(a) principal: Moreno Junior, Valter de Assis
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/31394
Resumo: In the last decades, dengue fever has become the most prevalent epidemic disease caused by an arborvirus in the world. Its socio-economic impact has been especially overloading to developing countries, which struggle with the lack of appropriate resources and policies to contain the disease. Good planning has been essential to this end and dramatically benefits from outbreak forecasts. Over time, several deterministic and stochastic mathematical models of dengue epidemics have been proposed. However, the methods used to estimate their parameters usually require complex calculations and strong distributional assumptions that may not be realistic. The goal of this study was to develop a data-driven method to estimate the parameters of epidemiological models using Machine Learning and Artificial Neural Networks (ANNs) that could circumvent such demands. To accomplish this, we created a data set of infectives time series generated with SIR models using parameters derived from previous dengue epidemics and additional random noise. We used the data to train and validate several neural network configurations using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as the loss function. The test of the best models showed that the MAPE network tended to estimate SIR models that fitted the data better than the MSE network. We then applied the MAPE model to the time series of dengue epidemics that occurred in Brazilian state capitals between 2007 and 2020. The overall results indicate that ANN data-driven estimation methods can be used to fit a deterministic epidemiological model to noisy data, at least in cases where the dynamic processes that underlie the generation of observations are similar to those specified in the model.
id FGV_2abd81364b45a869a0ad98ea9e4505f4
oai_identifier_str oai:repositorio.fgv.br:10438/31394
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Moreno Junior, Valter de AssisEscolas::EMApCarvalho, Luiz Max Fagundes deCunha Junior, AméricoGomes, MarceloCoelho, Flávio Codeço2021-12-13T18:22:18Z2021-12-13T18:22:18Z2021-05-21https://hdl.handle.net/10438/31394In the last decades, dengue fever has become the most prevalent epidemic disease caused by an arborvirus in the world. Its socio-economic impact has been especially overloading to developing countries, which struggle with the lack of appropriate resources and policies to contain the disease. Good planning has been essential to this end and dramatically benefits from outbreak forecasts. Over time, several deterministic and stochastic mathematical models of dengue epidemics have been proposed. However, the methods used to estimate their parameters usually require complex calculations and strong distributional assumptions that may not be realistic. The goal of this study was to develop a data-driven method to estimate the parameters of epidemiological models using Machine Learning and Artificial Neural Networks (ANNs) that could circumvent such demands. To accomplish this, we created a data set of infectives time series generated with SIR models using parameters derived from previous dengue epidemics and additional random noise. We used the data to train and validate several neural network configurations using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as the loss function. The test of the best models showed that the MAPE network tended to estimate SIR models that fitted the data better than the MSE network. We then applied the MAPE model to the time series of dengue epidemics that occurred in Brazilian state capitals between 2007 and 2020. The overall results indicate that ANN data-driven estimation methods can be used to fit a deterministic epidemiological model to noisy data, at least in cases where the dynamic processes that underlie the generation of observations are similar to those specified in the model.engDengueEpidemicsArtificial neural networksEpidemiological modelsParameter estimationMatemáticaDengueEpidemias - Modelos matemáticosRedes neurais (Computação)Análise de séries temporaisAprendizado do computadorEstimation of the SIR model parameters using neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis2021-05-21reponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTThesis_EMAp__complete.pdf.txtThesis_EMAp__complete.pdf.txtExtracted texttext/plain101062https://repositorio.fgv.br/bitstreams/37ce1cde-35f9-4a09-9c2c-e8324521efcc/download3525638ac34db877b3a942b37ff3f0ecMD55THUMBNAILThesis_EMAp__complete.pdf.jpgThesis_EMAp__complete.pdf.jpgGenerated Thumbnailimage/jpeg3285https://repositorio.fgv.br/bitstreams/b78ad10b-d2ef-4492-b730-e60bead0135c/download13fbcd27d1ac5623186b391197f5e667MD56ORIGINALThesis_EMAp__complete.pdfThesis_EMAp__complete.pdfPDFapplication/pdf16404882https://repositorio.fgv.br/bitstreams/068b1cf3-64ec-4568-bdda-f5ccd6c2a02a/downloadaa342baeedba82175fa37318fcc7903eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/3ccb6477-db5c-494e-a3a1-02931f1e6af1/downloaddfb340242cced38a6cca06c627998fa1MD5210438/313942023-11-25 11:34:16.099open.accessoai:repositorio.fgv.br:10438/31394https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T11:34:16Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Estimation of the SIR model parameters using neural networks
title Estimation of the SIR model parameters using neural networks
spellingShingle Estimation of the SIR model parameters using neural networks
Moreno Junior, Valter de Assis
Dengue
Epidemics
Artificial neural networks
Epidemiological models
Parameter estimation
Matemática
Dengue
Epidemias - Modelos matemáticos
Redes neurais (Computação)
Análise de séries temporais
Aprendizado do computador
title_short Estimation of the SIR model parameters using neural networks
title_full Estimation of the SIR model parameters using neural networks
title_fullStr Estimation of the SIR model parameters using neural networks
title_full_unstemmed Estimation of the SIR model parameters using neural networks
title_sort Estimation of the SIR model parameters using neural networks
author Moreno Junior, Valter de Assis
author_facet Moreno Junior, Valter de Assis
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EMAp
dc.contributor.member.none.fl_str_mv Carvalho, Luiz Max Fagundes de
Cunha Junior, Américo
Gomes, Marcelo
dc.contributor.author.fl_str_mv Moreno Junior, Valter de Assis
dc.contributor.advisor1.fl_str_mv Coelho, Flávio Codeço
contributor_str_mv Coelho, Flávio Codeço
dc.subject.por.fl_str_mv Dengue
topic Dengue
Epidemics
Artificial neural networks
Epidemiological models
Parameter estimation
Matemática
Dengue
Epidemias - Modelos matemáticos
Redes neurais (Computação)
Análise de séries temporais
Aprendizado do computador
dc.subject.eng.fl_str_mv Epidemics
Artificial neural networks
Epidemiological models
Parameter estimation
dc.subject.area.por.fl_str_mv Matemática
dc.subject.bibliodata.por.fl_str_mv Dengue
Epidemias - Modelos matemáticos
Redes neurais (Computação)
Análise de séries temporais
Aprendizado do computador
description In the last decades, dengue fever has become the most prevalent epidemic disease caused by an arborvirus in the world. Its socio-economic impact has been especially overloading to developing countries, which struggle with the lack of appropriate resources and policies to contain the disease. Good planning has been essential to this end and dramatically benefits from outbreak forecasts. Over time, several deterministic and stochastic mathematical models of dengue epidemics have been proposed. However, the methods used to estimate their parameters usually require complex calculations and strong distributional assumptions that may not be realistic. The goal of this study was to develop a data-driven method to estimate the parameters of epidemiological models using Machine Learning and Artificial Neural Networks (ANNs) that could circumvent such demands. To accomplish this, we created a data set of infectives time series generated with SIR models using parameters derived from previous dengue epidemics and additional random noise. We used the data to train and validate several neural network configurations using the Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as the loss function. The test of the best models showed that the MAPE network tended to estimate SIR models that fitted the data better than the MSE network. We then applied the MAPE model to the time series of dengue epidemics that occurred in Brazilian state capitals between 2007 and 2020. The overall results indicate that ANN data-driven estimation methods can be used to fit a deterministic epidemiological model to noisy data, at least in cases where the dynamic processes that underlie the generation of observations are similar to those specified in the model.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-13T18:22:18Z
dc.date.available.fl_str_mv 2021-12-13T18:22:18Z
dc.date.issued.fl_str_mv 2021-05-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/31394
url https://hdl.handle.net/10438/31394
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/37ce1cde-35f9-4a09-9c2c-e8324521efcc/download
https://repositorio.fgv.br/bitstreams/b78ad10b-d2ef-4492-b730-e60bead0135c/download
https://repositorio.fgv.br/bitstreams/068b1cf3-64ec-4568-bdda-f5ccd6c2a02a/download
https://repositorio.fgv.br/bitstreams/3ccb6477-db5c-494e-a3a1-02931f1e6af1/download
bitstream.checksum.fl_str_mv 3525638ac34db877b3a942b37ff3f0ec
13fbcd27d1ac5623186b391197f5e667
aa342baeedba82175fa37318fcc7903e
dfb340242cced38a6cca06c627998fa1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797639737573376