Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/35083 |
Resumo: | Com base nos recentes avanços nos métodos de nowcasting destinados a prever a atividade econômica de um país, foi aplicada a estimação por Modelos de Fatores Dinâmicos - Dynamic Factor Models (DFM) - sustentados pelo algoritmo de expectativa-maximização - Expectation-Maximization (EM) - para a previsão da taxa trimestral do PIB brasileiro em relação ao mesmo período do ano anterior. Esta metodologia lida habilmente com desafios como dados de frequências mistas, amostras recortadas, dados faltantes e a alta dimensionalidade inerente ao conjunto de dados macroeconômicos. Para facilitar este esforço, elaborou-se um pseudo-calendário que captura os principais indicadores macroeconômicos brasileiros desde o início de 2003 até agosto de 2023. Foram utilizadas as expectativas diárias do PIB, divulgada pelo Banco Central do Brasil (BCB), como benchmark para análise de desempenho do modelo. No final, um exercício de previsão em tempo real é proposto visando fazer a previsão do PIB em um período fora da amostra. |
id |
FGV_3eca9fedc56b392e3f1ccf4d91a58643 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/35083 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Wizenberg, MarceloEscolas::EPGEMaciel, Luiz Felipe PiresSouza, Rafael Martins deMatos, Silvia Maria2024-03-22T19:38:54Z2024-03-22T19:38:54Z2023-09-05https://hdl.handle.net/10438/35083Com base nos recentes avanços nos métodos de nowcasting destinados a prever a atividade econômica de um país, foi aplicada a estimação por Modelos de Fatores Dinâmicos - Dynamic Factor Models (DFM) - sustentados pelo algoritmo de expectativa-maximização - Expectation-Maximization (EM) - para a previsão da taxa trimestral do PIB brasileiro em relação ao mesmo período do ano anterior. Esta metodologia lida habilmente com desafios como dados de frequências mistas, amostras recortadas, dados faltantes e a alta dimensionalidade inerente ao conjunto de dados macroeconômicos. Para facilitar este esforço, elaborou-se um pseudo-calendário que captura os principais indicadores macroeconômicos brasileiros desde o início de 2003 até agosto de 2023. Foram utilizadas as expectativas diárias do PIB, divulgada pelo Banco Central do Brasil (BCB), como benchmark para análise de desempenho do modelo. No final, um exercício de previsão em tempo real é proposto visando fazer a previsão do PIB em um período fora da amostra.Drawing upon recent advancements in nowcasting methods tailored to forecast a country’s economic activity, the estimation using Dynamic Factor Models (DFM) was applied, supported by the Expectation-Maximization (EM) algorithm, to predict the quarterly rate of Brazilian GDP compared to the same period of the previous year. This methodology adeptly navigates challenges such as mixed-frequency data, truncated samples, missing entries, and the high dimensionality inherent to macroeconomic datasets. To facilitate this endeavor, a pseudo-calendar was crafted, capturing the key Brazilian macroeconomic indicators from the beginning of 2003 through August 2023. Daily GDP expectations, released by the Central Bank of Brazil (BCB), were employed as the model’s benchmark for performance assessment. In conclusion, an out-ofsample, real-time forecasting exercise is proposed, aiming to preemptively gauge the subsequent GDP figure slated for release.porPIBModelos de Fatores DinâmicosNowcastingGDPDynamic factor modelsEconomiaMacroeconomia - Modelos economêtricosProduto Interno BrutoModelos de Fatores DinâmicosNowcastingNowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALPDFPDFapplication/pdf4450545https://repositorio.fgv.br/bitstreams/961a4a6c-72e5-4a3f-8574-32f401007130/downloadf50a6b43fcef8a5ee3fd68a8688366acMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/ef7ba591-5424-42b2-953c-4fdae02c3e32/download2a4b67231f701c416a809246e7a10077MD52TEXTcombinepdf (1).pdf.txtcombinepdf (1).pdf.txtExtracted texttext/plain91185https://repositorio.fgv.br/bitstreams/6c7b29f4-def3-4a87-8c2e-0e8f42dc0cd2/downloada46fd45755d7ed2da772057a8b164b1bMD53PDF.txtPDF.txtExtracted texttext/plain91185https://repositorio.fgv.br/bitstreams/14962603-1294-41b6-9959-199372a94589/downloada46fd45755d7ed2da772057a8b164b1bMD55THUMBNAILcombinepdf (1).pdf.jpgcombinepdf (1).pdf.jpgGenerated Thumbnailimage/jpeg3125https://repositorio.fgv.br/bitstreams/f58cc3d6-a563-4e1f-abe2-02905f3051d7/downloadc884048e15cf171ba2c3398a61973447MD54PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg3125https://repositorio.fgv.br/bitstreams/954c87d0-d13f-414d-a5bb-c49e305a719e/downloadc884048e15cf171ba2c3398a61973447MD5610438/350832024-07-08 18:53:53.551open.accessoai:repositorio.fgv.br:10438/35083https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T18:53:53Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K |
dc.title.por.fl_str_mv |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
title |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
spellingShingle |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos Wizenberg, Marcelo PIB Modelos de Fatores Dinâmicos Nowcasting GDP Dynamic factor models Economia Macroeconomia - Modelos economêtricos Produto Interno Bruto Modelos de Fatores Dinâmicos Nowcasting |
title_short |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
title_full |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
title_fullStr |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
title_full_unstemmed |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
title_sort |
Nowcasting do PIB brasileiro: previsão utilizando modelos de fatores dinâmicos |
author |
Wizenberg, Marcelo |
author_facet |
Wizenberg, Marcelo |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.member.none.fl_str_mv |
Maciel, Luiz Felipe Pires Souza, Rafael Martins de |
dc.contributor.author.fl_str_mv |
Wizenberg, Marcelo |
dc.contributor.advisor1.fl_str_mv |
Matos, Silvia Maria |
contributor_str_mv |
Matos, Silvia Maria |
dc.subject.por.fl_str_mv |
PIB Modelos de Fatores Dinâmicos |
topic |
PIB Modelos de Fatores Dinâmicos Nowcasting GDP Dynamic factor models Economia Macroeconomia - Modelos economêtricos Produto Interno Bruto Modelos de Fatores Dinâmicos Nowcasting |
dc.subject.eng.fl_str_mv |
Nowcasting GDP Dynamic factor models |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Macroeconomia - Modelos economêtricos Produto Interno Bruto Modelos de Fatores Dinâmicos |
dc.subject.bibliodata.eng.fl_str_mv |
Nowcasting |
description |
Com base nos recentes avanços nos métodos de nowcasting destinados a prever a atividade econômica de um país, foi aplicada a estimação por Modelos de Fatores Dinâmicos - Dynamic Factor Models (DFM) - sustentados pelo algoritmo de expectativa-maximização - Expectation-Maximization (EM) - para a previsão da taxa trimestral do PIB brasileiro em relação ao mesmo período do ano anterior. Esta metodologia lida habilmente com desafios como dados de frequências mistas, amostras recortadas, dados faltantes e a alta dimensionalidade inerente ao conjunto de dados macroeconômicos. Para facilitar este esforço, elaborou-se um pseudo-calendário que captura os principais indicadores macroeconômicos brasileiros desde o início de 2003 até agosto de 2023. Foram utilizadas as expectativas diárias do PIB, divulgada pelo Banco Central do Brasil (BCB), como benchmark para análise de desempenho do modelo. No final, um exercício de previsão em tempo real é proposto visando fazer a previsão do PIB em um período fora da amostra. |
publishDate |
2023 |
dc.date.issued.fl_str_mv |
2023-09-05 |
dc.date.accessioned.fl_str_mv |
2024-03-22T19:38:54Z |
dc.date.available.fl_str_mv |
2024-03-22T19:38:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/35083 |
url |
https://hdl.handle.net/10438/35083 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/961a4a6c-72e5-4a3f-8574-32f401007130/download https://repositorio.fgv.br/bitstreams/ef7ba591-5424-42b2-953c-4fdae02c3e32/download https://repositorio.fgv.br/bitstreams/6c7b29f4-def3-4a87-8c2e-0e8f42dc0cd2/download https://repositorio.fgv.br/bitstreams/14962603-1294-41b6-9959-199372a94589/download https://repositorio.fgv.br/bitstreams/f58cc3d6-a563-4e1f-abe2-02905f3051d7/download https://repositorio.fgv.br/bitstreams/954c87d0-d13f-414d-a5bb-c49e305a719e/download |
bitstream.checksum.fl_str_mv |
f50a6b43fcef8a5ee3fd68a8688366ac 2a4b67231f701c416a809246e7a10077 a46fd45755d7ed2da772057a8b164b1b a46fd45755d7ed2da772057a8b164b1b c884048e15cf171ba2c3398a61973447 c884048e15cf171ba2c3398a61973447 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797749881044992 |