Modelos para projeção de inflação no Brasil com dados desagregados por regiões
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/18779 |
Resumo: | O objetivo deste estudo é avaliar se há ganhos em trabalhar com dados desagregados por regiões para projetar a inflação no Brasil. Para este fim, construímos modelos autoregressivos univariados para o agregado do IPCA (principal índice de preços ao consumidor brasileiro) e duas desagregações (por região ou por grupo e região) para um horizonte de projeção de até 12 meses à frente. Foram utilizados dados mensais do IPCA entre janeiro de 1996 e outubro de 2016 para o índice nacional e 11 regiões metropolitanas e capitais que compõem o índice. A análise das projeções fora da amostra foi feita em dois cortes distintos de tempo. Primeiro entre dezembro de 2006 e outubro de 2016 e, num segundo momento, para o período dezembro de 2006 a dezembro de 2012. Os modelos foram estimados pelo software Oxmetrics 7 e, em alguns casos, foi utilizado também o algoritmo Autometrics. As comparações dos modelos foram feitas pelo Erro Quadrático Médio e pela técnica Model Confidence Set, desenvolvida por Hansen, Lunde e Nason (2011). Os resultados indicam que o desempenho dos modelos desagregados é superior aos modelos agregados e, em especial, a desagregação por regiões pode contribuir para menor erro de previsão, embora não haja um único modelo que seja superior em todos os horizontes de projeção e o resultado esteja condicionado à amostra analisada. |
id |
FGV_4371e4b22e1c14b442d9076ed24eac60 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/18779 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Torres, Gustavo DiasEscolas::EESPMori, RogérioMendonça, Diogo de PrinceMarçal, Emerson Fernandes2017-09-13T12:13:30Z2017-09-13T12:13:30Z2017-08-23http://hdl.handle.net/10438/18779O objetivo deste estudo é avaliar se há ganhos em trabalhar com dados desagregados por regiões para projetar a inflação no Brasil. Para este fim, construímos modelos autoregressivos univariados para o agregado do IPCA (principal índice de preços ao consumidor brasileiro) e duas desagregações (por região ou por grupo e região) para um horizonte de projeção de até 12 meses à frente. Foram utilizados dados mensais do IPCA entre janeiro de 1996 e outubro de 2016 para o índice nacional e 11 regiões metropolitanas e capitais que compõem o índice. A análise das projeções fora da amostra foi feita em dois cortes distintos de tempo. Primeiro entre dezembro de 2006 e outubro de 2016 e, num segundo momento, para o período dezembro de 2006 a dezembro de 2012. Os modelos foram estimados pelo software Oxmetrics 7 e, em alguns casos, foi utilizado também o algoritmo Autometrics. As comparações dos modelos foram feitas pelo Erro Quadrático Médio e pela técnica Model Confidence Set, desenvolvida por Hansen, Lunde e Nason (2011). Os resultados indicam que o desempenho dos modelos desagregados é superior aos modelos agregados e, em especial, a desagregação por regiões pode contribuir para menor erro de previsão, embora não haja um único modelo que seja superior em todos os horizontes de projeção e o resultado esteja condicionado à amostra analisada.The objective of this study is to evaluate if there are gains in working with data disaggregated by regions to forecast inflation in Brazil. For this purpose, we constructed univariate autoregressive models with different types and levels of IPCA (main Brazilian consumer price index) disaggregation for a forecasting horizon of up to 12 months ahead. Monthly IPCA data were used between January 1996 and October 2016 for the national index and 11 metropolitan regions and capitals that make up the index. The analysis of out-of-sample projections was done in two distinct time sections. First between December 2006 and October 2016 and, secondly, for the period December 2006 and December 2012. The models were estimated by software Oxmetrics 7 and, in some cases, the Autometrics algorithm was also used. The comparisons of the models were made by the Mean Square Error and the Model Confidence Set technique, developed by Hansen, Lunde and Nason (2011). The results indicate that the performance of the disaggregated models is better than the aggregate models and, in particular, the disaggregation by regions may contribute to a smaller prediction error, although there is not a single model that is superior in all the forecast horizons and the result is Conditioned to the analyzed sample.porAutometricsModel confidence setInflationForecastingAutoregressive modelsInflaçãoProjeçãoModelos autorregressivosDesagregação por regiõesEconomiaModelos econométricosInflação - Modelos econométricosPrevisão econômicaModelos macroeconômicosModelos para projeção de inflação no Brasil com dados desagregados por regiõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTDissertação Gustavo Dias Torres_vFinal.pdf.txtDissertação Gustavo Dias Torres_vFinal.pdf.txtExtracted texttext/plain99409https://repositorio.fgv.br/bitstreams/9dbdd594-2f21-47f0-a4c9-17a8dee933dc/download3d5e86816e52f0c89c4955052a60fa68MD510ORIGINALDissertação Gustavo Dias Torres_vFinal.pdfDissertação Gustavo Dias Torres_vFinal.pdfapplication/pdf1258567https://repositorio.fgv.br/bitstreams/02f3e311-4c76-4fbd-a88a-07d360a30e7b/download522209b93a243d0d3fd0dd9d9caffb9aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/bdbd7dbe-38ab-40d4-a063-67e47dfd8903/downloaddfb340242cced38a6cca06c627998fa1MD55THUMBNAILDissertação Gustavo Dias Torres_vFinal.pdf.jpgDissertação Gustavo Dias Torres_vFinal.pdf.jpgGenerated Thumbnailimage/jpeg2414https://repositorio.fgv.br/bitstreams/3e5cfa45-c5dd-46f1-86fc-8d69751fdf48/download4768fcf21af44e788ab355cfd03effa3MD51110438/187792023-11-05 04:43:19.029open.accessoai:repositorio.fgv.br:10438/18779https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-05T04:43:19Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
title |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
spellingShingle |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões Torres, Gustavo Dias Autometrics Model confidence set Inflation Forecasting Autoregressive models Inflação Projeção Modelos autorregressivos Desagregação por regiões Economia Modelos econométricos Inflação - Modelos econométricos Previsão econômica Modelos macroeconômicos |
title_short |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
title_full |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
title_fullStr |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
title_full_unstemmed |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
title_sort |
Modelos para projeção de inflação no Brasil com dados desagregados por regiões |
author |
Torres, Gustavo Dias |
author_facet |
Torres, Gustavo Dias |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Mori, Rogério Mendonça, Diogo de Prince |
dc.contributor.author.fl_str_mv |
Torres, Gustavo Dias |
dc.contributor.advisor1.fl_str_mv |
Marçal, Emerson Fernandes |
contributor_str_mv |
Marçal, Emerson Fernandes |
dc.subject.eng.fl_str_mv |
Autometrics Model confidence set Inflation Forecasting Autoregressive models |
topic |
Autometrics Model confidence set Inflation Forecasting Autoregressive models Inflação Projeção Modelos autorregressivos Desagregação por regiões Economia Modelos econométricos Inflação - Modelos econométricos Previsão econômica Modelos macroeconômicos |
dc.subject.por.fl_str_mv |
Inflação Projeção Modelos autorregressivos Desagregação por regiões |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Modelos econométricos Inflação - Modelos econométricos Previsão econômica Modelos macroeconômicos |
description |
O objetivo deste estudo é avaliar se há ganhos em trabalhar com dados desagregados por regiões para projetar a inflação no Brasil. Para este fim, construímos modelos autoregressivos univariados para o agregado do IPCA (principal índice de preços ao consumidor brasileiro) e duas desagregações (por região ou por grupo e região) para um horizonte de projeção de até 12 meses à frente. Foram utilizados dados mensais do IPCA entre janeiro de 1996 e outubro de 2016 para o índice nacional e 11 regiões metropolitanas e capitais que compõem o índice. A análise das projeções fora da amostra foi feita em dois cortes distintos de tempo. Primeiro entre dezembro de 2006 e outubro de 2016 e, num segundo momento, para o período dezembro de 2006 a dezembro de 2012. Os modelos foram estimados pelo software Oxmetrics 7 e, em alguns casos, foi utilizado também o algoritmo Autometrics. As comparações dos modelos foram feitas pelo Erro Quadrático Médio e pela técnica Model Confidence Set, desenvolvida por Hansen, Lunde e Nason (2011). Os resultados indicam que o desempenho dos modelos desagregados é superior aos modelos agregados e, em especial, a desagregação por regiões pode contribuir para menor erro de previsão, embora não haja um único modelo que seja superior em todos os horizontes de projeção e o resultado esteja condicionado à amostra analisada. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-09-13T12:13:30Z |
dc.date.available.fl_str_mv |
2017-09-13T12:13:30Z |
dc.date.issued.fl_str_mv |
2017-08-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/18779 |
url |
http://hdl.handle.net/10438/18779 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/9dbdd594-2f21-47f0-a4c9-17a8dee933dc/download https://repositorio.fgv.br/bitstreams/02f3e311-4c76-4fbd-a88a-07d360a30e7b/download https://repositorio.fgv.br/bitstreams/bdbd7dbe-38ab-40d4-a063-67e47dfd8903/download https://repositorio.fgv.br/bitstreams/3e5cfa45-c5dd-46f1-86fc-8d69751fdf48/download |
bitstream.checksum.fl_str_mv |
3d5e86816e52f0c89c4955052a60fa68 522209b93a243d0d3fd0dd9d9caffb9a dfb340242cced38a6cca06c627998fa1 4768fcf21af44e788ab355cfd03effa3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797846561849344 |