Essays on high dimensional financial econometrics

Detalhes bibliográficos
Autor(a) principal: Cunha, Ronan
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/27781
Resumo: High dimensional models have gains relatively importance in several areas of economics due to advances in technology that has increased the set of information. They are useful to find and understand the relationship between agents, variables, to forecast and to generate inputs to economic decisions and policy making. The increase in dimensions, however, brings new challenges to overcome. Strategies to deal with highly parametrized models have been developed. This thesis aims to study three subjects in this literature. The first one is to evaluate the performance of macroeconomic indicators in forecasting out-of-sample behaviour of the aggregated and disaggregated at the State level credit volume series from May 2011 till April 2016. A variety of time series techniques are used to model level of credit such as Vector autoregressive models, Global Vector Autoregressive models and ARIMA. This study also uses the model selection algorithm called Autometrics to select parsimonious models in the forecast exercise. This work uses volume of credit from January 2004 to April 2011 as the first estimation growing sample. As macroeconomic indicator, we use the default indicator, industrial production, short-term interest rate (Selic) and inflation (IPCA). At State level, we collect data from employment and default rates. The best results at disaggregated level is obtained for Global VAR model. At aggregate level, VAR model with macroeconomic indicators has the best performance particularly at higher horizons. There is also some evidence that forecast combinations techniques help to improve prediction performance by reducing the Mean Absolute and Squared Forecast Errors. The second study revisits the empirical cross-sectional asset pricing literature analysing and comparing the explanatory power of 65 risk factors for Brazilian stock market from 2000 to 2017 using automatic model selection techniques. We apply two standard methodologies in the literature, time series and cross sectional approaches, for 234 portfolios. The results show that, for time series approach, excess market return and small minus big (SMB) are the most selected factors. Specifically, the former is selected to all tested portfolios. For cross-sectional approach, the average selection rates are very similar among factors, but some macroeconomic variables stand out. The third essay aims to compare the performance of three automatic model selection algorithms, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR and adaptive LASSOVAR (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017) for modelling and forecasting monthly covariance matrices. To do so, we compose a database with daily information for 30 Brazilian stocks (B3), which yields 465 unique entries in the matrix from July/2009 to December/2017. We apply three forecasting error measures, the model confidence set (Hansen et al., 2011) and Giacomini and White (2006) conditional test in the comparison. We also calculate the economic value for each of the forecasting strategy through a portfolio selection exercise. The results show that the individual models are not able to beat the benchmark, the random walk, but a weighted combination of them is able to increase precision up to 13%. The portfolio selection exercises find that there are economic gains for using automatic model selection techniques to model and forecast the covariance matrices. Specifically, under short-selling constraint, Autometrics VAR(1) with dummy saturation delivers the highest Sharpe-ratio and economic value. When the investor is able to short-sell, either Autometrics VAR(1) with dummy saturation or adaptive LASSOVAR(1) is preferable. This final choice depend on the risk aversion of the investor. If he is less risk-averse, he prefers the former, while the latter becomes his choice if his risk-aversion sensitivity increases.
id FGV_47aee05e06c2be3e646ba974897126e6
oai_identifier_str oai:repositorio.fgv.br:10438/27781
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Cunha, RonanEscolas::EESPMarçal, Emerson FernandesArtes, RinaldoHotta, Luiz KoodiMendonça, Diogo de PrincePereira, Pedro L. Valls2019-08-05T14:44:23Z2019-08-05T14:44:23Z2019-07-15http://hdl.handle.net/10438/27781High dimensional models have gains relatively importance in several areas of economics due to advances in technology that has increased the set of information. They are useful to find and understand the relationship between agents, variables, to forecast and to generate inputs to economic decisions and policy making. The increase in dimensions, however, brings new challenges to overcome. Strategies to deal with highly parametrized models have been developed. This thesis aims to study three subjects in this literature. The first one is to evaluate the performance of macroeconomic indicators in forecasting out-of-sample behaviour of the aggregated and disaggregated at the State level credit volume series from May 2011 till April 2016. A variety of time series techniques are used to model level of credit such as Vector autoregressive models, Global Vector Autoregressive models and ARIMA. This study also uses the model selection algorithm called Autometrics to select parsimonious models in the forecast exercise. This work uses volume of credit from January 2004 to April 2011 as the first estimation growing sample. As macroeconomic indicator, we use the default indicator, industrial production, short-term interest rate (Selic) and inflation (IPCA). At State level, we collect data from employment and default rates. The best results at disaggregated level is obtained for Global VAR model. At aggregate level, VAR model with macroeconomic indicators has the best performance particularly at higher horizons. There is also some evidence that forecast combinations techniques help to improve prediction performance by reducing the Mean Absolute and Squared Forecast Errors. The second study revisits the empirical cross-sectional asset pricing literature analysing and comparing the explanatory power of 65 risk factors for Brazilian stock market from 2000 to 2017 using automatic model selection techniques. We apply two standard methodologies in the literature, time series and cross sectional approaches, for 234 portfolios. The results show that, for time series approach, excess market return and small minus big (SMB) are the most selected factors. Specifically, the former is selected to all tested portfolios. For cross-sectional approach, the average selection rates are very similar among factors, but some macroeconomic variables stand out. The third essay aims to compare the performance of three automatic model selection algorithms, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR and adaptive LASSOVAR (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017) for modelling and forecasting monthly covariance matrices. To do so, we compose a database with daily information for 30 Brazilian stocks (B3), which yields 465 unique entries in the matrix from July/2009 to December/2017. We apply three forecasting error measures, the model confidence set (Hansen et al., 2011) and Giacomini and White (2006) conditional test in the comparison. We also calculate the economic value for each of the forecasting strategy through a portfolio selection exercise. The results show that the individual models are not able to beat the benchmark, the random walk, but a weighted combination of them is able to increase precision up to 13%. The portfolio selection exercises find that there are economic gains for using automatic model selection techniques to model and forecast the covariance matrices. Specifically, under short-selling constraint, Autometrics VAR(1) with dummy saturation delivers the highest Sharpe-ratio and economic value. When the investor is able to short-sell, either Autometrics VAR(1) with dummy saturation or adaptive LASSOVAR(1) is preferable. This final choice depend on the risk aversion of the investor. If he is less risk-averse, he prefers the former, while the latter becomes his choice if his risk-aversion sensitivity increases.Modelos de alta dimens˜ao tˆem se tornado relativamente importantes em v´arias ´areas da economia devido ao avan¸cos na tecnologia que vem proporcionando um aumento do conjunto de informa¸c˜ao a ser utilizado. Eles s˜ao ´uteis para encontrar e entender a rela¸c˜ao que existe entre agentes e vari´aveis econˆomicas e utiliz´a-las para previs˜ao e gera¸c˜ao de insumos na formula¸c˜ao de pol´ıtica e tomadas de decis˜ao. O aumento na dimens˜ao, entretanto, traz desafios a serem superados. Estrat´egias para lidar com modelos altamente parametrizados est˜ao sendo desenvolvidos. Essa tese tem o objetivos de estudar trˆes assuntos nessa literatura. O primeiro ´e avaliar o desempenho de indicadores macroeconˆomicos na previs˜ao fora da amostra do comportamento da s´erie do volume de cr´edito brasileiro agregado e desagregado por Estados de maio de 2011 at´e abril de 2016. Uma variedade de t´ecnicas em s´eries de tempo s˜ao utilizadas para modelar essa vari´avel, tais como, vectores autorregressivos (VAR), vetores autorregressivos globais (GVAR) e ARIMA. Esse estudo utiliza o algoritmo de sele¸c˜ao de modelos chamado Autometrics para selecionar um modelos parcimonioso para o exerc´ıcio de previs˜ao. Utiliza-se o volume de cr´edito de janeiro de 2004 at´e abril de 2011 como a primeira amostra crescente de estima¸c˜ao. Como vari´aveis macroeconˆomicas, utiliza-se produ¸c˜ao industrial, taxa de juros de curto prazo (Selic) e a taxa de infla¸c˜ao (IPCA). Ao n´ıvel estadual, coleta-se dados de desemprego e taxa de inadimplˆencia. Os melhores resultados ao n´ıvel desagregado s˜ao derivados dos modelos GVAR. Ao n´ıvel agregado, os modelos VAR com indicadores macroeconˆomicos tˆem a melhor performance particularmente para longos horizontes. H´a evidˆencias de que a combina¸c˜ao de previs˜oes ajuda a aumentar a precis˜ao das previs˜oes por reduzir a m´edia absoluta e o quadrado do erros de previs˜ao. O segundo estudo revisita a literatura emp´ırica de apre¸camento de ativos no crosssection analisando e comparando o poder explicativo de 65 fatores de risco para o mercado financeiro brasileiro de 2000 a 2017 utilizando t´ecnicas de sele¸c˜ao de modelos autom´aticas. Aplica-se as duas principais metodologias nessa literatura, de s´eries de tempo e a de cortes transversais, para 234 portf´olios. Os resultados mostram que, para a primeira abordagem, o excesso de retorno do mercado sobre o CDI e o indicador pequeno menos grande (SMB) s˜ao os fatores mais selecionados. Especificamente, o excesso de mercado foi selecionado para todos os portfolios. Atrav´es da abordagem de corte transversal, a m´edia das taxas de sele¸c˜ao s˜ao muito similares entre os fatores, mas algumas vari´aveis macroeconˆomicas se destacam. O terceiro ensaio tem o objetivo de comparar o desempenho de trˆes algoritmos de sele¸c˜ao de modelos, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR e LASSOVAR adaptativo (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017), para modelar e prever a matriz de covariˆancia mensal. Para isso, constr´oi-se uma base de dados com informa¸c˜oes di´arias para 30 a¸c˜oes negociadas no mercado de valores brasileiro (B3), o que resulta em 465 entradas ´unicas na matriz de julho 2009 at´e dezembro de 2017. Aplica-se trˆes medidas de erro de previs˜ao, o conjunto de modelos de confian¸ca Hansen et al. (2011) e o teste de compara¸c˜ao de habilidade preditiva condicional de Giacomini and White (2006). Calcula-se o valor econˆomico de cada estrat´egia de previs˜ao atrav´es de um exerc´ıcios de aloca¸c˜ao de portf´olio. Os resultados mostram que um modelo espec´ıfico n˜ao consegue derrotar o modelo de referˆencia, o passeio aleat´orio, mas uma combina¸c˜ao ponderada das previs˜oes consegue um aumento de at´e 13% na precis˜ao das previs˜oes. No exerc´ıcios de aloca¸c˜ao de portf´olio, encontra-se que h´a ganhos econˆomicos em utilizar t´ecnicas de sele¸c˜ao de modelos autom´aticas para modelar e prever os elementos da matriz de covariˆancia das a¸c˜oes. Especificamente, sob a restri¸c˜ao de venda a descoberto, Autometrics VAR(1) com vari´aveis de satura¸c˜ao entrega a maior raz˜ao de Sharpe e valor econˆomico. Quando o investidor pode fazer venda a descoberto, ele escolher´a ou Autometrics VAR(1) com vari´aveis de satura¸c˜ao ou LASSOVAR(1) adaptativo. A escolha final depende do n´ıvel de avers˜ao ao risco do investidor. Se ele for menos avesso ao risco, ele escolher´a o primeiro, enquanto que o segundo se tornar´a sua escolha se sua sensibilidade ao risco aumentar.engForecastingAutomatic model selectionCredit volumeCross-sectional asset pricingCovariance matrixAutometricsLASSOVector autoregressionPortfolio allocationPrevisãoSeleção automática de modelosVolume de créditoPrecificação de ativos no cross-sectionMatriz de covariânciaVetor autorregressivoAlocação de portfólioEconomiaEconometriaPrevisão econômicaModelo de precificação de ativosAlgoritmosModelos econométricosEssays on high dimensional financial econometricsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALTese_Ronan_Cunha.pdfTese_Ronan_Cunha.pdfPDFapplication/pdf2857698https://repositorio.fgv.br/bitstreams/3f8ba7d3-d43c-493e-afe1-e34b9dbe3744/download9eb1f8ce87fc4d00198cdfe8d8962fadMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/68beb810-7abd-4ffd-80c1-ae89f51b70cd/downloaddfb340242cced38a6cca06c627998fa1MD54TEXTTese_Ronan_Cunha.pdf.txtTese_Ronan_Cunha.pdf.txtExtracted texttext/plain100935https://repositorio.fgv.br/bitstreams/9243336a-c773-4fd8-9e09-3c18345640fa/downloaddd23a7fcdd816725dee4b1af78f29ae2MD59THUMBNAILTese_Ronan_Cunha.pdf.jpgTese_Ronan_Cunha.pdf.jpgGenerated Thumbnailimage/jpeg2451https://repositorio.fgv.br/bitstreams/a8297879-3872-4026-b693-befc8bfe7dc7/download246bf38930bb1704040fe7d8b24d8c1eMD51010438/277812023-11-03 23:37:46.769open.accessoai:repositorio.fgv.br:10438/27781https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-03T23:37:46Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Essays on high dimensional financial econometrics
title Essays on high dimensional financial econometrics
spellingShingle Essays on high dimensional financial econometrics
Cunha, Ronan
Forecasting
Automatic model selection
Credit volume
Cross-sectional asset pricing
Covariance matrix
Autometrics
LASSO
Vector autoregression
Portfolio allocation
Previsão
Seleção automática de modelos
Volume de crédito
Precificação de ativos no cross-section
Matriz de covariância
Vetor autorregressivo
Alocação de portfólio
Economia
Econometria
Previsão econômica
Modelo de precificação de ativos
Algoritmos
Modelos econométricos
title_short Essays on high dimensional financial econometrics
title_full Essays on high dimensional financial econometrics
title_fullStr Essays on high dimensional financial econometrics
title_full_unstemmed Essays on high dimensional financial econometrics
title_sort Essays on high dimensional financial econometrics
author Cunha, Ronan
author_facet Cunha, Ronan
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Marçal, Emerson Fernandes
Artes, Rinaldo
Hotta, Luiz Koodi
Mendonça, Diogo de Prince
dc.contributor.author.fl_str_mv Cunha, Ronan
dc.contributor.advisor1.fl_str_mv Pereira, Pedro L. Valls
contributor_str_mv Pereira, Pedro L. Valls
dc.subject.eng.fl_str_mv Forecasting
Automatic model selection
Credit volume
Cross-sectional asset pricing
Covariance matrix
Autometrics
LASSO
Vector autoregression
Portfolio allocation
topic Forecasting
Automatic model selection
Credit volume
Cross-sectional asset pricing
Covariance matrix
Autometrics
LASSO
Vector autoregression
Portfolio allocation
Previsão
Seleção automática de modelos
Volume de crédito
Precificação de ativos no cross-section
Matriz de covariância
Vetor autorregressivo
Alocação de portfólio
Economia
Econometria
Previsão econômica
Modelo de precificação de ativos
Algoritmos
Modelos econométricos
dc.subject.por.fl_str_mv Previsão
Seleção automática de modelos
Volume de crédito
Precificação de ativos no cross-section
Matriz de covariância
Vetor autorregressivo
Alocação de portfólio
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Econometria
Previsão econômica
Modelo de precificação de ativos
Algoritmos
Modelos econométricos
description High dimensional models have gains relatively importance in several areas of economics due to advances in technology that has increased the set of information. They are useful to find and understand the relationship between agents, variables, to forecast and to generate inputs to economic decisions and policy making. The increase in dimensions, however, brings new challenges to overcome. Strategies to deal with highly parametrized models have been developed. This thesis aims to study three subjects in this literature. The first one is to evaluate the performance of macroeconomic indicators in forecasting out-of-sample behaviour of the aggregated and disaggregated at the State level credit volume series from May 2011 till April 2016. A variety of time series techniques are used to model level of credit such as Vector autoregressive models, Global Vector Autoregressive models and ARIMA. This study also uses the model selection algorithm called Autometrics to select parsimonious models in the forecast exercise. This work uses volume of credit from January 2004 to April 2011 as the first estimation growing sample. As macroeconomic indicator, we use the default indicator, industrial production, short-term interest rate (Selic) and inflation (IPCA). At State level, we collect data from employment and default rates. The best results at disaggregated level is obtained for Global VAR model. At aggregate level, VAR model with macroeconomic indicators has the best performance particularly at higher horizons. There is also some evidence that forecast combinations techniques help to improve prediction performance by reducing the Mean Absolute and Squared Forecast Errors. The second study revisits the empirical cross-sectional asset pricing literature analysing and comparing the explanatory power of 65 risk factors for Brazilian stock market from 2000 to 2017 using automatic model selection techniques. We apply two standard methodologies in the literature, time series and cross sectional approaches, for 234 portfolios. The results show that, for time series approach, excess market return and small minus big (SMB) are the most selected factors. Specifically, the former is selected to all tested portfolios. For cross-sectional approach, the average selection rates are very similar among factors, but some macroeconomic variables stand out. The third essay aims to compare the performance of three automatic model selection algorithms, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR and adaptive LASSOVAR (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017) for modelling and forecasting monthly covariance matrices. To do so, we compose a database with daily information for 30 Brazilian stocks (B3), which yields 465 unique entries in the matrix from July/2009 to December/2017. We apply three forecasting error measures, the model confidence set (Hansen et al., 2011) and Giacomini and White (2006) conditional test in the comparison. We also calculate the economic value for each of the forecasting strategy through a portfolio selection exercise. The results show that the individual models are not able to beat the benchmark, the random walk, but a weighted combination of them is able to increase precision up to 13%. The portfolio selection exercises find that there are economic gains for using automatic model selection techniques to model and forecast the covariance matrices. Specifically, under short-selling constraint, Autometrics VAR(1) with dummy saturation delivers the highest Sharpe-ratio and economic value. When the investor is able to short-sell, either Autometrics VAR(1) with dummy saturation or adaptive LASSOVAR(1) is preferable. This final choice depend on the risk aversion of the investor. If he is less risk-averse, he prefers the former, while the latter becomes his choice if his risk-aversion sensitivity increases.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-08-05T14:44:23Z
dc.date.available.fl_str_mv 2019-08-05T14:44:23Z
dc.date.issued.fl_str_mv 2019-07-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/27781
url http://hdl.handle.net/10438/27781
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/3f8ba7d3-d43c-493e-afe1-e34b9dbe3744/download
https://repositorio.fgv.br/bitstreams/68beb810-7abd-4ffd-80c1-ae89f51b70cd/download
https://repositorio.fgv.br/bitstreams/9243336a-c773-4fd8-9e09-3c18345640fa/download
https://repositorio.fgv.br/bitstreams/a8297879-3872-4026-b693-befc8bfe7dc7/download
bitstream.checksum.fl_str_mv 9eb1f8ce87fc4d00198cdfe8d8962fad
dfb340242cced38a6cca06c627998fa1
dd23a7fcdd816725dee4b1af78f29ae2
246bf38930bb1704040fe7d8b24d8c1e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797858827042816