Essays on high dimensional financial econometrics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/27781 |
Resumo: | High dimensional models have gains relatively importance in several areas of economics due to advances in technology that has increased the set of information. They are useful to find and understand the relationship between agents, variables, to forecast and to generate inputs to economic decisions and policy making. The increase in dimensions, however, brings new challenges to overcome. Strategies to deal with highly parametrized models have been developed. This thesis aims to study three subjects in this literature. The first one is to evaluate the performance of macroeconomic indicators in forecasting out-of-sample behaviour of the aggregated and disaggregated at the State level credit volume series from May 2011 till April 2016. A variety of time series techniques are used to model level of credit such as Vector autoregressive models, Global Vector Autoregressive models and ARIMA. This study also uses the model selection algorithm called Autometrics to select parsimonious models in the forecast exercise. This work uses volume of credit from January 2004 to April 2011 as the first estimation growing sample. As macroeconomic indicator, we use the default indicator, industrial production, short-term interest rate (Selic) and inflation (IPCA). At State level, we collect data from employment and default rates. The best results at disaggregated level is obtained for Global VAR model. At aggregate level, VAR model with macroeconomic indicators has the best performance particularly at higher horizons. There is also some evidence that forecast combinations techniques help to improve prediction performance by reducing the Mean Absolute and Squared Forecast Errors. The second study revisits the empirical cross-sectional asset pricing literature analysing and comparing the explanatory power of 65 risk factors for Brazilian stock market from 2000 to 2017 using automatic model selection techniques. We apply two standard methodologies in the literature, time series and cross sectional approaches, for 234 portfolios. The results show that, for time series approach, excess market return and small minus big (SMB) are the most selected factors. Specifically, the former is selected to all tested portfolios. For cross-sectional approach, the average selection rates are very similar among factors, but some macroeconomic variables stand out. The third essay aims to compare the performance of three automatic model selection algorithms, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR and adaptive LASSOVAR (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017) for modelling and forecasting monthly covariance matrices. To do so, we compose a database with daily information for 30 Brazilian stocks (B3), which yields 465 unique entries in the matrix from July/2009 to December/2017. We apply three forecasting error measures, the model confidence set (Hansen et al., 2011) and Giacomini and White (2006) conditional test in the comparison. We also calculate the economic value for each of the forecasting strategy through a portfolio selection exercise. The results show that the individual models are not able to beat the benchmark, the random walk, but a weighted combination of them is able to increase precision up to 13%. The portfolio selection exercises find that there are economic gains for using automatic model selection techniques to model and forecast the covariance matrices. Specifically, under short-selling constraint, Autometrics VAR(1) with dummy saturation delivers the highest Sharpe-ratio and economic value. When the investor is able to short-sell, either Autometrics VAR(1) with dummy saturation or adaptive LASSOVAR(1) is preferable. This final choice depend on the risk aversion of the investor. If he is less risk-averse, he prefers the former, while the latter becomes his choice if his risk-aversion sensitivity increases. |
id |
FGV_47aee05e06c2be3e646ba974897126e6 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/27781 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Cunha, RonanEscolas::EESPMarçal, Emerson FernandesArtes, RinaldoHotta, Luiz KoodiMendonça, Diogo de PrincePereira, Pedro L. Valls2019-08-05T14:44:23Z2019-08-05T14:44:23Z2019-07-15http://hdl.handle.net/10438/27781High dimensional models have gains relatively importance in several areas of economics due to advances in technology that has increased the set of information. They are useful to find and understand the relationship between agents, variables, to forecast and to generate inputs to economic decisions and policy making. The increase in dimensions, however, brings new challenges to overcome. Strategies to deal with highly parametrized models have been developed. This thesis aims to study three subjects in this literature. The first one is to evaluate the performance of macroeconomic indicators in forecasting out-of-sample behaviour of the aggregated and disaggregated at the State level credit volume series from May 2011 till April 2016. A variety of time series techniques are used to model level of credit such as Vector autoregressive models, Global Vector Autoregressive models and ARIMA. This study also uses the model selection algorithm called Autometrics to select parsimonious models in the forecast exercise. This work uses volume of credit from January 2004 to April 2011 as the first estimation growing sample. As macroeconomic indicator, we use the default indicator, industrial production, short-term interest rate (Selic) and inflation (IPCA). At State level, we collect data from employment and default rates. The best results at disaggregated level is obtained for Global VAR model. At aggregate level, VAR model with macroeconomic indicators has the best performance particularly at higher horizons. There is also some evidence that forecast combinations techniques help to improve prediction performance by reducing the Mean Absolute and Squared Forecast Errors. The second study revisits the empirical cross-sectional asset pricing literature analysing and comparing the explanatory power of 65 risk factors for Brazilian stock market from 2000 to 2017 using automatic model selection techniques. We apply two standard methodologies in the literature, time series and cross sectional approaches, for 234 portfolios. The results show that, for time series approach, excess market return and small minus big (SMB) are the most selected factors. Specifically, the former is selected to all tested portfolios. For cross-sectional approach, the average selection rates are very similar among factors, but some macroeconomic variables stand out. The third essay aims to compare the performance of three automatic model selection algorithms, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR and adaptive LASSOVAR (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017) for modelling and forecasting monthly covariance matrices. To do so, we compose a database with daily information for 30 Brazilian stocks (B3), which yields 465 unique entries in the matrix from July/2009 to December/2017. We apply three forecasting error measures, the model confidence set (Hansen et al., 2011) and Giacomini and White (2006) conditional test in the comparison. We also calculate the economic value for each of the forecasting strategy through a portfolio selection exercise. The results show that the individual models are not able to beat the benchmark, the random walk, but a weighted combination of them is able to increase precision up to 13%. The portfolio selection exercises find that there are economic gains for using automatic model selection techniques to model and forecast the covariance matrices. Specifically, under short-selling constraint, Autometrics VAR(1) with dummy saturation delivers the highest Sharpe-ratio and economic value. When the investor is able to short-sell, either Autometrics VAR(1) with dummy saturation or adaptive LASSOVAR(1) is preferable. This final choice depend on the risk aversion of the investor. If he is less risk-averse, he prefers the former, while the latter becomes his choice if his risk-aversion sensitivity increases.Modelos de alta dimens˜ao tˆem se tornado relativamente importantes em v´arias ´areas da economia devido ao avan¸cos na tecnologia que vem proporcionando um aumento do conjunto de informa¸c˜ao a ser utilizado. Eles s˜ao ´uteis para encontrar e entender a rela¸c˜ao que existe entre agentes e vari´aveis econˆomicas e utiliz´a-las para previs˜ao e gera¸c˜ao de insumos na formula¸c˜ao de pol´ıtica e tomadas de decis˜ao. O aumento na dimens˜ao, entretanto, traz desafios a serem superados. Estrat´egias para lidar com modelos altamente parametrizados est˜ao sendo desenvolvidos. Essa tese tem o objetivos de estudar trˆes assuntos nessa literatura. O primeiro ´e avaliar o desempenho de indicadores macroeconˆomicos na previs˜ao fora da amostra do comportamento da s´erie do volume de cr´edito brasileiro agregado e desagregado por Estados de maio de 2011 at´e abril de 2016. Uma variedade de t´ecnicas em s´eries de tempo s˜ao utilizadas para modelar essa vari´avel, tais como, vectores autorregressivos (VAR), vetores autorregressivos globais (GVAR) e ARIMA. Esse estudo utiliza o algoritmo de sele¸c˜ao de modelos chamado Autometrics para selecionar um modelos parcimonioso para o exerc´ıcio de previs˜ao. Utiliza-se o volume de cr´edito de janeiro de 2004 at´e abril de 2011 como a primeira amostra crescente de estima¸c˜ao. Como vari´aveis macroeconˆomicas, utiliza-se produ¸c˜ao industrial, taxa de juros de curto prazo (Selic) e a taxa de infla¸c˜ao (IPCA). Ao n´ıvel estadual, coleta-se dados de desemprego e taxa de inadimplˆencia. Os melhores resultados ao n´ıvel desagregado s˜ao derivados dos modelos GVAR. Ao n´ıvel agregado, os modelos VAR com indicadores macroeconˆomicos tˆem a melhor performance particularmente para longos horizontes. H´a evidˆencias de que a combina¸c˜ao de previs˜oes ajuda a aumentar a precis˜ao das previs˜oes por reduzir a m´edia absoluta e o quadrado do erros de previs˜ao. O segundo estudo revisita a literatura emp´ırica de apre¸camento de ativos no crosssection analisando e comparando o poder explicativo de 65 fatores de risco para o mercado financeiro brasileiro de 2000 a 2017 utilizando t´ecnicas de sele¸c˜ao de modelos autom´aticas. Aplica-se as duas principais metodologias nessa literatura, de s´eries de tempo e a de cortes transversais, para 234 portf´olios. Os resultados mostram que, para a primeira abordagem, o excesso de retorno do mercado sobre o CDI e o indicador pequeno menos grande (SMB) s˜ao os fatores mais selecionados. Especificamente, o excesso de mercado foi selecionado para todos os portfolios. Atrav´es da abordagem de corte transversal, a m´edia das taxas de sele¸c˜ao s˜ao muito similares entre os fatores, mas algumas vari´aveis macroeconˆomicas se destacam. O terceiro ensaio tem o objetivo de comparar o desempenho de trˆes algoritmos de sele¸c˜ao de modelos, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR e LASSOVAR adaptativo (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017), para modelar e prever a matriz de covariˆancia mensal. Para isso, constr´oi-se uma base de dados com informa¸c˜oes di´arias para 30 a¸c˜oes negociadas no mercado de valores brasileiro (B3), o que resulta em 465 entradas ´unicas na matriz de julho 2009 at´e dezembro de 2017. Aplica-se trˆes medidas de erro de previs˜ao, o conjunto de modelos de confian¸ca Hansen et al. (2011) e o teste de compara¸c˜ao de habilidade preditiva condicional de Giacomini and White (2006). Calcula-se o valor econˆomico de cada estrat´egia de previs˜ao atrav´es de um exerc´ıcios de aloca¸c˜ao de portf´olio. Os resultados mostram que um modelo espec´ıfico n˜ao consegue derrotar o modelo de referˆencia, o passeio aleat´orio, mas uma combina¸c˜ao ponderada das previs˜oes consegue um aumento de at´e 13% na precis˜ao das previs˜oes. No exerc´ıcios de aloca¸c˜ao de portf´olio, encontra-se que h´a ganhos econˆomicos em utilizar t´ecnicas de sele¸c˜ao de modelos autom´aticas para modelar e prever os elementos da matriz de covariˆancia das a¸c˜oes. Especificamente, sob a restri¸c˜ao de venda a descoberto, Autometrics VAR(1) com vari´aveis de satura¸c˜ao entrega a maior raz˜ao de Sharpe e valor econˆomico. Quando o investidor pode fazer venda a descoberto, ele escolher´a ou Autometrics VAR(1) com vari´aveis de satura¸c˜ao ou LASSOVAR(1) adaptativo. A escolha final depende do n´ıvel de avers˜ao ao risco do investidor. Se ele for menos avesso ao risco, ele escolher´a o primeiro, enquanto que o segundo se tornar´a sua escolha se sua sensibilidade ao risco aumentar.engForecastingAutomatic model selectionCredit volumeCross-sectional asset pricingCovariance matrixAutometricsLASSOVector autoregressionPortfolio allocationPrevisãoSeleção automática de modelosVolume de créditoPrecificação de ativos no cross-sectionMatriz de covariânciaVetor autorregressivoAlocação de portfólioEconomiaEconometriaPrevisão econômicaModelo de precificação de ativosAlgoritmosModelos econométricosEssays on high dimensional financial econometricsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALTese_Ronan_Cunha.pdfTese_Ronan_Cunha.pdfPDFapplication/pdf2857698https://repositorio.fgv.br/bitstreams/3f8ba7d3-d43c-493e-afe1-e34b9dbe3744/download9eb1f8ce87fc4d00198cdfe8d8962fadMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/68beb810-7abd-4ffd-80c1-ae89f51b70cd/downloaddfb340242cced38a6cca06c627998fa1MD54TEXTTese_Ronan_Cunha.pdf.txtTese_Ronan_Cunha.pdf.txtExtracted texttext/plain100935https://repositorio.fgv.br/bitstreams/9243336a-c773-4fd8-9e09-3c18345640fa/downloaddd23a7fcdd816725dee4b1af78f29ae2MD59THUMBNAILTese_Ronan_Cunha.pdf.jpgTese_Ronan_Cunha.pdf.jpgGenerated Thumbnailimage/jpeg2451https://repositorio.fgv.br/bitstreams/a8297879-3872-4026-b693-befc8bfe7dc7/download246bf38930bb1704040fe7d8b24d8c1eMD51010438/277812023-11-03 23:37:46.769open.accessoai:repositorio.fgv.br:10438/27781https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-03T23:37:46Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Essays on high dimensional financial econometrics |
title |
Essays on high dimensional financial econometrics |
spellingShingle |
Essays on high dimensional financial econometrics Cunha, Ronan Forecasting Automatic model selection Credit volume Cross-sectional asset pricing Covariance matrix Autometrics LASSO Vector autoregression Portfolio allocation Previsão Seleção automática de modelos Volume de crédito Precificação de ativos no cross-section Matriz de covariância Vetor autorregressivo Alocação de portfólio Economia Econometria Previsão econômica Modelo de precificação de ativos Algoritmos Modelos econométricos |
title_short |
Essays on high dimensional financial econometrics |
title_full |
Essays on high dimensional financial econometrics |
title_fullStr |
Essays on high dimensional financial econometrics |
title_full_unstemmed |
Essays on high dimensional financial econometrics |
title_sort |
Essays on high dimensional financial econometrics |
author |
Cunha, Ronan |
author_facet |
Cunha, Ronan |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Marçal, Emerson Fernandes Artes, Rinaldo Hotta, Luiz Koodi Mendonça, Diogo de Prince |
dc.contributor.author.fl_str_mv |
Cunha, Ronan |
dc.contributor.advisor1.fl_str_mv |
Pereira, Pedro L. Valls |
contributor_str_mv |
Pereira, Pedro L. Valls |
dc.subject.eng.fl_str_mv |
Forecasting Automatic model selection Credit volume Cross-sectional asset pricing Covariance matrix Autometrics LASSO Vector autoregression Portfolio allocation |
topic |
Forecasting Automatic model selection Credit volume Cross-sectional asset pricing Covariance matrix Autometrics LASSO Vector autoregression Portfolio allocation Previsão Seleção automática de modelos Volume de crédito Precificação de ativos no cross-section Matriz de covariância Vetor autorregressivo Alocação de portfólio Economia Econometria Previsão econômica Modelo de precificação de ativos Algoritmos Modelos econométricos |
dc.subject.por.fl_str_mv |
Previsão Seleção automática de modelos Volume de crédito Precificação de ativos no cross-section Matriz de covariância Vetor autorregressivo Alocação de portfólio |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Econometria Previsão econômica Modelo de precificação de ativos Algoritmos Modelos econométricos |
description |
High dimensional models have gains relatively importance in several areas of economics due to advances in technology that has increased the set of information. They are useful to find and understand the relationship between agents, variables, to forecast and to generate inputs to economic decisions and policy making. The increase in dimensions, however, brings new challenges to overcome. Strategies to deal with highly parametrized models have been developed. This thesis aims to study three subjects in this literature. The first one is to evaluate the performance of macroeconomic indicators in forecasting out-of-sample behaviour of the aggregated and disaggregated at the State level credit volume series from May 2011 till April 2016. A variety of time series techniques are used to model level of credit such as Vector autoregressive models, Global Vector Autoregressive models and ARIMA. This study also uses the model selection algorithm called Autometrics to select parsimonious models in the forecast exercise. This work uses volume of credit from January 2004 to April 2011 as the first estimation growing sample. As macroeconomic indicator, we use the default indicator, industrial production, short-term interest rate (Selic) and inflation (IPCA). At State level, we collect data from employment and default rates. The best results at disaggregated level is obtained for Global VAR model. At aggregate level, VAR model with macroeconomic indicators has the best performance particularly at higher horizons. There is also some evidence that forecast combinations techniques help to improve prediction performance by reducing the Mean Absolute and Squared Forecast Errors. The second study revisits the empirical cross-sectional asset pricing literature analysing and comparing the explanatory power of 65 risk factors for Brazilian stock market from 2000 to 2017 using automatic model selection techniques. We apply two standard methodologies in the literature, time series and cross sectional approaches, for 234 portfolios. The results show that, for time series approach, excess market return and small minus big (SMB) are the most selected factors. Specifically, the former is selected to all tested portfolios. For cross-sectional approach, the average selection rates are very similar among factors, but some macroeconomic variables stand out. The third essay aims to compare the performance of three automatic model selection algorithms, Autometrics (Hendry and Krolzig, 1999; Doornik, 2009), LASSOVAR and adaptive LASSOVAR (Tibshirani, 1996; Zhao and Yu, 2006; Callot et al., 2017) for modelling and forecasting monthly covariance matrices. To do so, we compose a database with daily information for 30 Brazilian stocks (B3), which yields 465 unique entries in the matrix from July/2009 to December/2017. We apply three forecasting error measures, the model confidence set (Hansen et al., 2011) and Giacomini and White (2006) conditional test in the comparison. We also calculate the economic value for each of the forecasting strategy through a portfolio selection exercise. The results show that the individual models are not able to beat the benchmark, the random walk, but a weighted combination of them is able to increase precision up to 13%. The portfolio selection exercises find that there are economic gains for using automatic model selection techniques to model and forecast the covariance matrices. Specifically, under short-selling constraint, Autometrics VAR(1) with dummy saturation delivers the highest Sharpe-ratio and economic value. When the investor is able to short-sell, either Autometrics VAR(1) with dummy saturation or adaptive LASSOVAR(1) is preferable. This final choice depend on the risk aversion of the investor. If he is less risk-averse, he prefers the former, while the latter becomes his choice if his risk-aversion sensitivity increases. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-08-05T14:44:23Z |
dc.date.available.fl_str_mv |
2019-08-05T14:44:23Z |
dc.date.issued.fl_str_mv |
2019-07-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/27781 |
url |
http://hdl.handle.net/10438/27781 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/3f8ba7d3-d43c-493e-afe1-e34b9dbe3744/download https://repositorio.fgv.br/bitstreams/68beb810-7abd-4ffd-80c1-ae89f51b70cd/download https://repositorio.fgv.br/bitstreams/9243336a-c773-4fd8-9e09-3c18345640fa/download https://repositorio.fgv.br/bitstreams/a8297879-3872-4026-b693-befc8bfe7dc7/download |
bitstream.checksum.fl_str_mv |
9eb1f8ce87fc4d00198cdfe8d8962fad dfb340242cced38a6cca06c627998fa1 dd23a7fcdd816725dee4b1af78f29ae2 246bf38930bb1704040fe7d8b24d8c1e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797858827042816 |