Exploring counterfactual antecedents to reduce criminality

Detalhes bibliográficos
Autor(a) principal: Raimundo, Marcos Medeiros
Data de Publicação: 2021
Tipo de documento: Relatório
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/31626
Resumo: This research project developed a series of methodologies to help identifying urban, socioeconomic and space-temporal factors that lead to crime. Our research had four main pillars: (1) Hotspot analysis was used to investigate possible ways to define what is a crime hotspot, in other words, how to define the size and area of geographical area to designate resources to reduce criminality; (2) Space-temporal analysis was used to understand the space and time correlations on crime; (3) Socioeconomic analysis was used to identify the main social and economical variables that affect crime; (4) Counterfactual analysis was used to understand which variables we should change on which magnitude we should change it to reduce significantly the crime in a certain location. All of these analysis where integrated in distinct visualization tools to help users to understand and have insights about crime in order to plan actions to reduce criminality.
id FGV_486b150c9646450f922388a6e924aaf5
oai_identifier_str oai:repositorio.fgv.br:10438/31626
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Raimundo, Marcos MedeirosPoco, JorgeEscolas::EMApDemais unidades::RPCA2022-02-21T21:36:03Z2022-02-21T21:36:03Z2021-12-22https://hdl.handle.net/10438/31626This research project developed a series of methodologies to help identifying urban, socioeconomic and space-temporal factors that lead to crime. Our research had four main pillars: (1) Hotspot analysis was used to investigate possible ways to define what is a crime hotspot, in other words, how to define the size and area of geographical area to designate resources to reduce criminality; (2) Space-temporal analysis was used to understand the space and time correlations on crime; (3) Socioeconomic analysis was used to identify the main social and economical variables that affect crime; (4) Counterfactual analysis was used to understand which variables we should change on which magnitude we should change it to reduce significantly the crime in a certain location. All of these analysis where integrated in distinct visualization tools to help users to understand and have insights about crime in order to plan actions to reduce criminality.engViolênciaMatemáticaTecnologiaInteligência artificialCriminalidade urbanaViolênciaSegurança públicaExploring counterfactual antecedents to reduce criminalityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessModelos matemáticos e computacionais de otimização de estratégias de redução dos níveis de violência no BrasilProjetos de Pesquisa AplicadaORIGINALReportMarcos.pdfReportMarcos.pdfPDFapplication/pdf7909310https://repositorio.fgv.br/bitstreams/de39dcb5-b115-460e-9925-098b9a495733/downloada8e2ff4de3183205ab5f08775423fd69MD51TEXTReportMarcos.pdf.txtReportMarcos.pdf.txtExtracted texttext/plain83295https://repositorio.fgv.br/bitstreams/212d1b2a-73f7-4bbe-a82f-0f3bef5cf14a/downloadf7dd047a9652509c262b7c9ab1e5cfa6MD54THUMBNAILReportMarcos.pdf.jpgReportMarcos.pdf.jpgGenerated Thumbnailimage/jpeg3412https://repositorio.fgv.br/bitstreams/3d29e580-4c16-4f14-ac56-5db6d467efef/download72468e5f54b740ce974f7fd6c3c902d6MD5510438/316262023-11-25 10:16:44.913open.accessoai:repositorio.fgv.br:10438/31626https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T10:16:44Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv Exploring counterfactual antecedents to reduce criminality
title Exploring counterfactual antecedents to reduce criminality
spellingShingle Exploring counterfactual antecedents to reduce criminality
Raimundo, Marcos Medeiros
Violência
Matemática
Tecnologia
Inteligência artificial
Criminalidade urbana
Violência
Segurança pública
title_short Exploring counterfactual antecedents to reduce criminality
title_full Exploring counterfactual antecedents to reduce criminality
title_fullStr Exploring counterfactual antecedents to reduce criminality
title_full_unstemmed Exploring counterfactual antecedents to reduce criminality
title_sort Exploring counterfactual antecedents to reduce criminality
author Raimundo, Marcos Medeiros
author_facet Raimundo, Marcos Medeiros
author_role author
dc.contributor.other.none.fl_str_mv Poco, Jorge
dc.contributor.unidadefgv.none.fl_str_mv Escolas::EMAp
Demais unidades::RPCA
dc.contributor.author.fl_str_mv Raimundo, Marcos Medeiros
dc.subject.por.fl_str_mv Violência
topic Violência
Matemática
Tecnologia
Inteligência artificial
Criminalidade urbana
Violência
Segurança pública
dc.subject.area.por.fl_str_mv Matemática
Tecnologia
dc.subject.bibliodata.por.fl_str_mv Inteligência artificial
Criminalidade urbana
Violência
Segurança pública
description This research project developed a series of methodologies to help identifying urban, socioeconomic and space-temporal factors that lead to crime. Our research had four main pillars: (1) Hotspot analysis was used to investigate possible ways to define what is a crime hotspot, in other words, how to define the size and area of geographical area to designate resources to reduce criminality; (2) Space-temporal analysis was used to understand the space and time correlations on crime; (3) Socioeconomic analysis was used to identify the main social and economical variables that affect crime; (4) Counterfactual analysis was used to understand which variables we should change on which magnitude we should change it to reduce significantly the crime in a certain location. All of these analysis where integrated in distinct visualization tools to help users to understand and have insights about crime in order to plan actions to reduce criminality.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-22
dc.date.accessioned.fl_str_mv 2022-02-21T21:36:03Z
dc.date.available.fl_str_mv 2022-02-21T21:36:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/report
format report
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/31626
url https://hdl.handle.net/10438/31626
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/de39dcb5-b115-460e-9925-098b9a495733/download
https://repositorio.fgv.br/bitstreams/212d1b2a-73f7-4bbe-a82f-0f3bef5cf14a/download
https://repositorio.fgv.br/bitstreams/3d29e580-4c16-4f14-ac56-5db6d467efef/download
bitstream.checksum.fl_str_mv a8e2ff4de3183205ab5f08775423fd69
f7dd047a9652509c262b7c9ab1e5cfa6
72468e5f54b740ce974f7fd6c3c902d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797636172414976