Exploring counterfactual antecedents to reduce criminality
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Relatório |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/31626 |
Resumo: | This research project developed a series of methodologies to help identifying urban, socioeconomic and space-temporal factors that lead to crime. Our research had four main pillars: (1) Hotspot analysis was used to investigate possible ways to define what is a crime hotspot, in other words, how to define the size and area of geographical area to designate resources to reduce criminality; (2) Space-temporal analysis was used to understand the space and time correlations on crime; (3) Socioeconomic analysis was used to identify the main social and economical variables that affect crime; (4) Counterfactual analysis was used to understand which variables we should change on which magnitude we should change it to reduce significantly the crime in a certain location. All of these analysis where integrated in distinct visualization tools to help users to understand and have insights about crime in order to plan actions to reduce criminality. |
id |
FGV_486b150c9646450f922388a6e924aaf5 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/31626 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Raimundo, Marcos MedeirosPoco, JorgeEscolas::EMApDemais unidades::RPCA2022-02-21T21:36:03Z2022-02-21T21:36:03Z2021-12-22https://hdl.handle.net/10438/31626This research project developed a series of methodologies to help identifying urban, socioeconomic and space-temporal factors that lead to crime. Our research had four main pillars: (1) Hotspot analysis was used to investigate possible ways to define what is a crime hotspot, in other words, how to define the size and area of geographical area to designate resources to reduce criminality; (2) Space-temporal analysis was used to understand the space and time correlations on crime; (3) Socioeconomic analysis was used to identify the main social and economical variables that affect crime; (4) Counterfactual analysis was used to understand which variables we should change on which magnitude we should change it to reduce significantly the crime in a certain location. All of these analysis where integrated in distinct visualization tools to help users to understand and have insights about crime in order to plan actions to reduce criminality.engViolênciaMatemáticaTecnologiaInteligência artificialCriminalidade urbanaViolênciaSegurança públicaExploring counterfactual antecedents to reduce criminalityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessModelos matemáticos e computacionais de otimização de estratégias de redução dos níveis de violência no BrasilProjetos de Pesquisa AplicadaORIGINALReportMarcos.pdfReportMarcos.pdfPDFapplication/pdf7909310https://repositorio.fgv.br/bitstreams/de39dcb5-b115-460e-9925-098b9a495733/downloada8e2ff4de3183205ab5f08775423fd69MD51TEXTReportMarcos.pdf.txtReportMarcos.pdf.txtExtracted texttext/plain83295https://repositorio.fgv.br/bitstreams/212d1b2a-73f7-4bbe-a82f-0f3bef5cf14a/downloadf7dd047a9652509c262b7c9ab1e5cfa6MD54THUMBNAILReportMarcos.pdf.jpgReportMarcos.pdf.jpgGenerated Thumbnailimage/jpeg3412https://repositorio.fgv.br/bitstreams/3d29e580-4c16-4f14-ac56-5db6d467efef/download72468e5f54b740ce974f7fd6c3c902d6MD5510438/316262023-11-25 10:16:44.913open.accessoai:repositorio.fgv.br:10438/31626https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T10:16:44Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
Exploring counterfactual antecedents to reduce criminality |
title |
Exploring counterfactual antecedents to reduce criminality |
spellingShingle |
Exploring counterfactual antecedents to reduce criminality Raimundo, Marcos Medeiros Violência Matemática Tecnologia Inteligência artificial Criminalidade urbana Violência Segurança pública |
title_short |
Exploring counterfactual antecedents to reduce criminality |
title_full |
Exploring counterfactual antecedents to reduce criminality |
title_fullStr |
Exploring counterfactual antecedents to reduce criminality |
title_full_unstemmed |
Exploring counterfactual antecedents to reduce criminality |
title_sort |
Exploring counterfactual antecedents to reduce criminality |
author |
Raimundo, Marcos Medeiros |
author_facet |
Raimundo, Marcos Medeiros |
author_role |
author |
dc.contributor.other.none.fl_str_mv |
Poco, Jorge |
dc.contributor.unidadefgv.none.fl_str_mv |
Escolas::EMAp Demais unidades::RPCA |
dc.contributor.author.fl_str_mv |
Raimundo, Marcos Medeiros |
dc.subject.por.fl_str_mv |
Violência |
topic |
Violência Matemática Tecnologia Inteligência artificial Criminalidade urbana Violência Segurança pública |
dc.subject.area.por.fl_str_mv |
Matemática Tecnologia |
dc.subject.bibliodata.por.fl_str_mv |
Inteligência artificial Criminalidade urbana Violência Segurança pública |
description |
This research project developed a series of methodologies to help identifying urban, socioeconomic and space-temporal factors that lead to crime. Our research had four main pillars: (1) Hotspot analysis was used to investigate possible ways to define what is a crime hotspot, in other words, how to define the size and area of geographical area to designate resources to reduce criminality; (2) Space-temporal analysis was used to understand the space and time correlations on crime; (3) Socioeconomic analysis was used to identify the main social and economical variables that affect crime; (4) Counterfactual analysis was used to understand which variables we should change on which magnitude we should change it to reduce significantly the crime in a certain location. All of these analysis where integrated in distinct visualization tools to help users to understand and have insights about crime in order to plan actions to reduce criminality. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-12-22 |
dc.date.accessioned.fl_str_mv |
2022-02-21T21:36:03Z |
dc.date.available.fl_str_mv |
2022-02-21T21:36:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/report |
format |
report |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/31626 |
url |
https://hdl.handle.net/10438/31626 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/de39dcb5-b115-460e-9925-098b9a495733/download https://repositorio.fgv.br/bitstreams/212d1b2a-73f7-4bbe-a82f-0f3bef5cf14a/download https://repositorio.fgv.br/bitstreams/3d29e580-4c16-4f14-ac56-5db6d467efef/download |
bitstream.checksum.fl_str_mv |
a8e2ff4de3183205ab5f08775423fd69 f7dd047a9652509c262b7c9ab1e5cfa6 72468e5f54b740ce974f7fd6c3c902d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797636172414976 |