Two additions to Lucas's 'inflation and welfare'

Detalhes bibliográficos
Autor(a) principal: Cysne, Rubens Penha
Data de Publicação: 2004
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/963
Resumo: This work adds to Lucas (2000) by providing analytical solutions to two problems that are solved only numerically by the author. The first part uses a theorem in control theory (Arrow' s sufficiency theorem) to provide sufficiency conditions to characterize the optimum in a shopping-time problem where the value function need not be concave. In the original paper the optimality of the first-order condition is characterized only by means of a numerical analysis. The second part of the paper provides a closed-form solution to the general-equilibrium expression of the welfare costs of inflation when the money demand is double logarithmic. This closed-form solution allows for the precise calculation of the difference between the general-equilibrium and Bailey's partial-equilibrium estimates of the welfare losses due to inflation. Again, in Lucas's original paper, the solution to the general-equilibrium-case underlying nonlinear differential equation is done only numerically, and the posterior assertion that the general-equilibrium welfare figures cannot be distinguished from those derived using Bailey's formula rely only on numerical simulations as well.
id FGV_5ff12647ee4f1e4613a714f4d625a6ea
oai_identifier_str oai:repositorio.fgv.br:10438/963
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Cysne, Rubens PenhaEscolas::EPGEFGV2008-05-13T15:43:41Z2008-05-13T15:43:41Z2004-04-010104-8910http://hdl.handle.net/10438/963This work adds to Lucas (2000) by providing analytical solutions to two problems that are solved only numerically by the author. The first part uses a theorem in control theory (Arrow' s sufficiency theorem) to provide sufficiency conditions to characterize the optimum in a shopping-time problem where the value function need not be concave. In the original paper the optimality of the first-order condition is characterized only by means of a numerical analysis. The second part of the paper provides a closed-form solution to the general-equilibrium expression of the welfare costs of inflation when the money demand is double logarithmic. This closed-form solution allows for the precise calculation of the difference between the general-equilibrium and Bailey's partial-equilibrium estimates of the welfare losses due to inflation. Again, in Lucas's original paper, the solution to the general-equilibrium-case underlying nonlinear differential equation is done only numerically, and the posterior assertion that the general-equilibrium welfare figures cannot be distinguished from those derived using Bailey's formula rely only on numerical simulations as well.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;543Arrow's theoremOptimal controlEconomiaEconomiaInflaçãoBem-estar econômicoTwo additions to Lucas's 'inflation and welfare'info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINAL1623.pdfapplication/pdf190713https://repositorio.fgv.br/bitstreams/7632aaa3-bdd8-4007-adec-bbe6dd882ca8/download3435d9fc614b8fd14403f968ea31eb55MD51TEXT1623.pdf.txt1623.pdf.txtExtracted texttext/plain23650https://repositorio.fgv.br/bitstreams/d91e01de-4a70-4ec1-ae89-eb94aca8bcbc/download58bc5b32b39b7eb15aedffb29cc69557MD56THUMBNAIL1623.pdf.jpg1623.pdf.jpgGenerated Thumbnailimage/jpeg3207https://repositorio.fgv.br/bitstreams/8306790c-d9cd-4164-b6cd-dce9760d9a38/download8798d0e8406548d137e0206a59e3e307MD5710438/9632023-11-09 22:40:39.368open.accessoai:repositorio.fgv.br:10438/963https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-09T22:40:39Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv Two additions to Lucas's 'inflation and welfare'
title Two additions to Lucas's 'inflation and welfare'
spellingShingle Two additions to Lucas's 'inflation and welfare'
Cysne, Rubens Penha
Arrow's theorem
Optimal control
Economia
Economia
Inflação
Bem-estar econômico
title_short Two additions to Lucas's 'inflation and welfare'
title_full Two additions to Lucas's 'inflation and welfare'
title_fullStr Two additions to Lucas's 'inflation and welfare'
title_full_unstemmed Two additions to Lucas's 'inflation and welfare'
title_sort Two additions to Lucas's 'inflation and welfare'
author Cysne, Rubens Penha
author_facet Cysne, Rubens Penha
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.author.fl_str_mv Cysne, Rubens Penha
dc.subject.por.fl_str_mv Arrow's theorem
Optimal control
topic Arrow's theorem
Optimal control
Economia
Economia
Inflação
Bem-estar econômico
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Economia
Inflação
Bem-estar econômico
description This work adds to Lucas (2000) by providing analytical solutions to two problems that are solved only numerically by the author. The first part uses a theorem in control theory (Arrow' s sufficiency theorem) to provide sufficiency conditions to characterize the optimum in a shopping-time problem where the value function need not be concave. In the original paper the optimality of the first-order condition is characterized only by means of a numerical analysis. The second part of the paper provides a closed-form solution to the general-equilibrium expression of the welfare costs of inflation when the money demand is double logarithmic. This closed-form solution allows for the precise calculation of the difference between the general-equilibrium and Bailey's partial-equilibrium estimates of the welfare losses due to inflation. Again, in Lucas's original paper, the solution to the general-equilibrium-case underlying nonlinear differential equation is done only numerically, and the posterior assertion that the general-equilibrium welfare figures cannot be distinguished from those derived using Bailey's formula rely only on numerical simulations as well.
publishDate 2004
dc.date.issued.fl_str_mv 2004-04-01
dc.date.accessioned.fl_str_mv 2008-05-13T15:43:41Z
dc.date.available.fl_str_mv 2008-05-13T15:43:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/963
dc.identifier.issn.none.fl_str_mv 0104-8910
identifier_str_mv 0104-8910
url http://hdl.handle.net/10438/963
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Ensaios Econômicos;543
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/7632aaa3-bdd8-4007-adec-bbe6dd882ca8/download
https://repositorio.fgv.br/bitstreams/d91e01de-4a70-4ec1-ae89-eb94aca8bcbc/download
https://repositorio.fgv.br/bitstreams/8306790c-d9cd-4164-b6cd-dce9760d9a38/download
bitstream.checksum.fl_str_mv 3435d9fc614b8fd14403f968ea31eb55
58bc5b32b39b7eb15aedffb29cc69557
8798d0e8406548d137e0206a59e3e307
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797658060390400