Local concavifiability of preferences and determinacy of equilibrium
Autor(a) principal: | |
---|---|
Data de Publicação: | 1991 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/386 |
Resumo: | In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions. |
id |
FGV_802dfa42cedef3ab876b31236d035813 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/386 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Pascoa, Mario RuiWerlang, Sérgio Ribeiro da CostaEscolas::EPGEFGV2008-05-13T15:23:18Z2008-05-13T15:23:18Z1991-050104-8910http://hdl.handle.net/10438/386In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions.engFundação Getulio Vargas. Escola de Pós-graduação em EconomiaEnsaios Econômicos;174Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveisinfo:eu-repo/semantics/openAccessConcavifiability of preferencesRectifiability of demandLocal uniqueness of equilibrium pricesEconomiaEquilíbrio econômicoConsumidores - PreferênciaEconomiaLocal concavifiability of preferences and determinacy of equilibriuminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL000056535.pdf000056535.pdfapplication/pdf824827https://repositorio.fgv.br/bitstreams/3f85ace7-e8fc-48bb-ac52-882232c527e9/download17b6cce60752a0314b5afb220767f192MD51TEXT000056535.pdf.txt000056535.pdf.txtExtracted texttext/plain40585https://repositorio.fgv.br/bitstreams/e0cb80d9-4fa5-4e48-bc0d-53e55f5d5d3c/downloadc598b806fab5e0d0d13f787a922440ffMD56THUMBNAIL000056535.pdf.jpg000056535.pdf.jpgGenerated Thumbnailimage/jpeg2247https://repositorio.fgv.br/bitstreams/0cd28fad-ae3c-4e02-bc77-d30858d3c9e0/download6adfee936a31abbda10e8abbacf14939MD5710438/3862023-11-09 16:05:36.056open.accessoai:repositorio.fgv.br:10438/386https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-09T16:05:36Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
Local concavifiability of preferences and determinacy of equilibrium |
title |
Local concavifiability of preferences and determinacy of equilibrium |
spellingShingle |
Local concavifiability of preferences and determinacy of equilibrium Pascoa, Mario Rui Concavifiability of preferences Rectifiability of demand Local uniqueness of equilibrium prices Economia Equilíbrio econômico Consumidores - Preferência Economia |
title_short |
Local concavifiability of preferences and determinacy of equilibrium |
title_full |
Local concavifiability of preferences and determinacy of equilibrium |
title_fullStr |
Local concavifiability of preferences and determinacy of equilibrium |
title_full_unstemmed |
Local concavifiability of preferences and determinacy of equilibrium |
title_sort |
Local concavifiability of preferences and determinacy of equilibrium |
author |
Pascoa, Mario Rui |
author_facet |
Pascoa, Mario Rui Werlang, Sérgio Ribeiro da Costa |
author_role |
author |
author2 |
Werlang, Sérgio Ribeiro da Costa |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Pascoa, Mario Rui Werlang, Sérgio Ribeiro da Costa |
dc.subject.por.fl_str_mv |
Concavifiability of preferences Rectifiability of demand Local uniqueness of equilibrium prices |
topic |
Concavifiability of preferences Rectifiability of demand Local uniqueness of equilibrium prices Economia Equilíbrio econômico Consumidores - Preferência Economia |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Equilíbrio econômico Consumidores - Preferência Economia |
description |
In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions. |
publishDate |
1991 |
dc.date.issued.fl_str_mv |
1991-05 |
dc.date.accessioned.fl_str_mv |
2008-05-13T15:23:18Z |
dc.date.available.fl_str_mv |
2008-05-13T15:23:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/386 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/386 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;174 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/3f85ace7-e8fc-48bb-ac52-882232c527e9/download https://repositorio.fgv.br/bitstreams/e0cb80d9-4fa5-4e48-bc0d-53e55f5d5d3c/download https://repositorio.fgv.br/bitstreams/0cd28fad-ae3c-4e02-bc77-d30858d3c9e0/download |
bitstream.checksum.fl_str_mv |
17b6cce60752a0314b5afb220767f192 c598b806fab5e0d0d13f787a922440ff 6adfee936a31abbda10e8abbacf14939 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797609935994880 |