Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/24613 |
Resumo: | O objetivo dessa dissertação é identificar os melhores modelos para prever falência de empresas dos setores de mineração, óleo e gás no período entre 1998 e 2017. Em termos metodológicos, buscou-se estimar um modelo de regressão logística para prever as falências das empresas por meio de indicadores financeiros. Estimam-se modelos com dados anuais e trimestrais utilizando informações dos últimos três, dois e um ano anteriores às falências, contados a partir de um ano antes da formalização da falência. Conclui-se que o melhor modelo é aquele que utiliza as informações mais recentes, do último ano, e com dados trimestrais. As variáveis de patrimônio líquido sobre passivo total e fluxo de caixa de investimentos sobre passivo total se destacaram dentre os demais indicadores, sendo somente a primeira significativa em todos os modelos. O melhor modelo teve 79,1% de acerto geral e 85,5% de acerto para as empresas que faliram. |
id |
FGV_879acf5da9586df4fbc986b3787b5019 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/24613 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Chieh, Roberto ShanreyEscolas::EESPRochman, Ricardo RatnerMilan, Pedro Luiz Albertin BonoSampaio, Joelson Oliveira2018-08-27T13:48:01Z2018-08-27T13:48:01Z2018-07-31http://hdl.handle.net/10438/24613O objetivo dessa dissertação é identificar os melhores modelos para prever falência de empresas dos setores de mineração, óleo e gás no período entre 1998 e 2017. Em termos metodológicos, buscou-se estimar um modelo de regressão logística para prever as falências das empresas por meio de indicadores financeiros. Estimam-se modelos com dados anuais e trimestrais utilizando informações dos últimos três, dois e um ano anteriores às falências, contados a partir de um ano antes da formalização da falência. Conclui-se que o melhor modelo é aquele que utiliza as informações mais recentes, do último ano, e com dados trimestrais. As variáveis de patrimônio líquido sobre passivo total e fluxo de caixa de investimentos sobre passivo total se destacaram dentre os demais indicadores, sendo somente a primeira significativa em todos os modelos. O melhor modelo teve 79,1% de acerto geral e 85,5% de acerto para as empresas que faliram.The objective of this study is to identify the best models for predicting bankruptcy of companies from the mining, oil and gas industries between 1998 and 2017. It was estimated a logistic regression model to predict business failure given their financial indicators. It was estimated models with yearly and quarterly information figures using figures from the last three years, last two years, and also last one year prior to the year just before the formalization of the bankruptcy event. The results show that the best model is the one using the most recent information, from the last one year, and using quarterly available data. The ratios total equity to total liabilities and cash flow from investments to total liabilities are the most important indicators to predict bankruptcy, even though only the first one is significant in all models. The best model correctly predicted 79.1% among all firms and 85.5% of the firms that went bankrupt.porBankruptcy predictionFinancial ratiosMiningOil and gasPrevisão de falênciaIndicadores financeirosMineraçãoÓleo e gásEconomiaFalênciaIndicadores econômicosÓleo - IndústriaGás - IndústriaMinas e recursos minerais - IndústriaIndicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gásinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVTEXTDissertação MPE - Roberto Chieh - v24.pdf.txtDissertação MPE - Roberto Chieh - v24.pdf.txtExtracted texttext/plain102084https://repositorio.fgv.br/bitstreams/88f8056f-8a07-44f3-a491-8c556c13e53b/download3b0c504352249b21d4edbc78c5dafc0dMD57ORIGINALDissertação MPE - Roberto Chieh - v24.pdfDissertação MPE - Roberto Chieh - v24.pdfapplication/pdf961253https://repositorio.fgv.br/bitstreams/06d31f0f-9ae7-4869-a952-3ebca658c720/download1b330f244eb5945c4c15d9d2165215e2MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/5d6d730c-6a2c-4b16-ba32-efd8c1319a7f/downloaddfb340242cced38a6cca06c627998fa1MD54THUMBNAILDissertação MPE - Roberto Chieh - v24.pdf.jpgDissertação MPE - Roberto Chieh - v24.pdf.jpgGenerated Thumbnailimage/jpeg2367https://repositorio.fgv.br/bitstreams/ff2aa935-e4a7-438b-8d02-d76c5b545ddb/download4391b06480ce8a5d075a5897d4880b26MD5810438/246132023-11-28 10:53:01.505open.accessoai:repositorio.fgv.br:10438/24613https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-28T10:53:01Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.por.fl_str_mv |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
title |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
spellingShingle |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás Chieh, Roberto Shanrey Bankruptcy prediction Financial ratios Mining Oil and gas Previsão de falência Indicadores financeiros Mineração Óleo e gás Economia Falência Indicadores econômicos Óleo - Indústria Gás - Indústria Minas e recursos minerais - Indústria |
title_short |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
title_full |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
title_fullStr |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
title_full_unstemmed |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
title_sort |
Indicadores financeiros trimestrais para prever falências nos setores de mineração, óleo e gás |
author |
Chieh, Roberto Shanrey |
author_facet |
Chieh, Roberto Shanrey |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Rochman, Ricardo Ratner Milan, Pedro Luiz Albertin Bono |
dc.contributor.author.fl_str_mv |
Chieh, Roberto Shanrey |
dc.contributor.advisor1.fl_str_mv |
Sampaio, Joelson Oliveira |
contributor_str_mv |
Sampaio, Joelson Oliveira |
dc.subject.eng.fl_str_mv |
Bankruptcy prediction Financial ratios Mining Oil and gas |
topic |
Bankruptcy prediction Financial ratios Mining Oil and gas Previsão de falência Indicadores financeiros Mineração Óleo e gás Economia Falência Indicadores econômicos Óleo - Indústria Gás - Indústria Minas e recursos minerais - Indústria |
dc.subject.por.fl_str_mv |
Previsão de falência Indicadores financeiros Mineração Óleo e gás |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Falência Indicadores econômicos Óleo - Indústria Gás - Indústria Minas e recursos minerais - Indústria |
description |
O objetivo dessa dissertação é identificar os melhores modelos para prever falência de empresas dos setores de mineração, óleo e gás no período entre 1998 e 2017. Em termos metodológicos, buscou-se estimar um modelo de regressão logística para prever as falências das empresas por meio de indicadores financeiros. Estimam-se modelos com dados anuais e trimestrais utilizando informações dos últimos três, dois e um ano anteriores às falências, contados a partir de um ano antes da formalização da falência. Conclui-se que o melhor modelo é aquele que utiliza as informações mais recentes, do último ano, e com dados trimestrais. As variáveis de patrimônio líquido sobre passivo total e fluxo de caixa de investimentos sobre passivo total se destacaram dentre os demais indicadores, sendo somente a primeira significativa em todos os modelos. O melhor modelo teve 79,1% de acerto geral e 85,5% de acerto para as empresas que faliram. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-08-27T13:48:01Z |
dc.date.available.fl_str_mv |
2018-08-27T13:48:01Z |
dc.date.issued.fl_str_mv |
2018-07-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/24613 |
url |
http://hdl.handle.net/10438/24613 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/88f8056f-8a07-44f3-a491-8c556c13e53b/download https://repositorio.fgv.br/bitstreams/06d31f0f-9ae7-4869-a952-3ebca658c720/download https://repositorio.fgv.br/bitstreams/5d6d730c-6a2c-4b16-ba32-efd8c1319a7f/download https://repositorio.fgv.br/bitstreams/ff2aa935-e4a7-438b-8d02-d76c5b545ddb/download |
bitstream.checksum.fl_str_mv |
3b0c504352249b21d4edbc78c5dafc0d 1b330f244eb5945c4c15d9d2165215e2 dfb340242cced38a6cca06c627998fa1 4391b06480ce8a5d075a5897d4880b26 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797840310239232 |