Estimating sectoral cycles using cointegration and common features

Detalhes bibliográficos
Autor(a) principal: Engle, R. F.
Data de Publicação: 1994
Outros Autores: Issler, João Victor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/556
Resumo: This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks.
id FGV_9305808f664d7e3459bfedeb5f75a262
oai_identifier_str oai:repositorio.fgv.br:10438/556
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Engle, R. F.Issler, João VictorEscolas::EPGEFGV2008-05-13T15:26:35Z2008-05-13T15:26:35Z1994-030104-8910http://hdl.handle.net/10438/556This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;232Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveisinfo:eu-repo/semantics/openAccessEstimating sectoral cycles using cointegration and common featuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaEconomiaCiclos econômicosreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL000060714.pdf000060714.pdfapplication/pdf1643829https://repositorio.fgv.br/bitstreams/3ac7c5ea-29ac-4313-a90b-1324bbb0ef7f/download8927912c15e36199a4a857b1dc6e7762MD51TEXT000060714.pdf.txt000060714.pdf.txtExtracted texttext/plain85570https://repositorio.fgv.br/bitstreams/b4db4cd2-25b4-46a1-8128-1f716febc75b/downloadb0f7e30402d81527c06ccbe79f00fa31MD56THUMBNAIL000060714.pdf.jpg000060714.pdf.jpgGenerated Thumbnailimage/jpeg2249https://repositorio.fgv.br/bitstreams/7a86721d-0195-48dd-8ee6-36c334fd9152/download7ee8dca23bd190d87cfbd867ebd31006MD5710438/5562023-11-08 12:07:59.451open.accessoai:repositorio.fgv.br:10438/556https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T12:07:59Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv Estimating sectoral cycles using cointegration and common features
title Estimating sectoral cycles using cointegration and common features
spellingShingle Estimating sectoral cycles using cointegration and common features
Engle, R. F.
Economia
Economia
Ciclos econômicos
title_short Estimating sectoral cycles using cointegration and common features
title_full Estimating sectoral cycles using cointegration and common features
title_fullStr Estimating sectoral cycles using cointegration and common features
title_full_unstemmed Estimating sectoral cycles using cointegration and common features
title_sort Estimating sectoral cycles using cointegration and common features
author Engle, R. F.
author_facet Engle, R. F.
Issler, João Victor
author_role author
author2 Issler, João Victor
author2_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.author.fl_str_mv Engle, R. F.
Issler, João Victor
dc.subject.area.por.fl_str_mv Economia
topic Economia
Economia
Ciclos econômicos
dc.subject.bibliodata.por.fl_str_mv Economia
Ciclos econômicos
description This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks.
publishDate 1994
dc.date.issued.fl_str_mv 1994-03
dc.date.accessioned.fl_str_mv 2008-05-13T15:26:35Z
dc.date.available.fl_str_mv 2008-05-13T15:26:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/556
dc.identifier.issn.none.fl_str_mv 0104-8910
identifier_str_mv 0104-8910
url http://hdl.handle.net/10438/556
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Ensaios Econômicos;232
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/3ac7c5ea-29ac-4313-a90b-1324bbb0ef7f/download
https://repositorio.fgv.br/bitstreams/b4db4cd2-25b4-46a1-8128-1f716febc75b/download
https://repositorio.fgv.br/bitstreams/7a86721d-0195-48dd-8ee6-36c334fd9152/download
bitstream.checksum.fl_str_mv 8927912c15e36199a4a857b1dc6e7762
b0f7e30402d81527c06ccbe79f00fa31
7ee8dca23bd190d87cfbd867ebd31006
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797802989322240