Estimating sectoral cycles using cointegration and common features
Autor(a) principal: | |
---|---|
Data de Publicação: | 1994 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/556 |
Resumo: | This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks. |
id |
FGV_9305808f664d7e3459bfedeb5f75a262 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/556 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Engle, R. F.Issler, João VictorEscolas::EPGEFGV2008-05-13T15:26:35Z2008-05-13T15:26:35Z1994-030104-8910http://hdl.handle.net/10438/556This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;232Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveisinfo:eu-repo/semantics/openAccessEstimating sectoral cycles using cointegration and common featuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaEconomiaCiclos econômicosreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL000060714.pdf000060714.pdfapplication/pdf1643829https://repositorio.fgv.br/bitstreams/3ac7c5ea-29ac-4313-a90b-1324bbb0ef7f/download8927912c15e36199a4a857b1dc6e7762MD51TEXT000060714.pdf.txt000060714.pdf.txtExtracted texttext/plain85570https://repositorio.fgv.br/bitstreams/b4db4cd2-25b4-46a1-8128-1f716febc75b/downloadb0f7e30402d81527c06ccbe79f00fa31MD56THUMBNAIL000060714.pdf.jpg000060714.pdf.jpgGenerated Thumbnailimage/jpeg2249https://repositorio.fgv.br/bitstreams/7a86721d-0195-48dd-8ee6-36c334fd9152/download7ee8dca23bd190d87cfbd867ebd31006MD5710438/5562023-11-08 12:07:59.451open.accessoai:repositorio.fgv.br:10438/556https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T12:07:59Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
Estimating sectoral cycles using cointegration and common features |
title |
Estimating sectoral cycles using cointegration and common features |
spellingShingle |
Estimating sectoral cycles using cointegration and common features Engle, R. F. Economia Economia Ciclos econômicos |
title_short |
Estimating sectoral cycles using cointegration and common features |
title_full |
Estimating sectoral cycles using cointegration and common features |
title_fullStr |
Estimating sectoral cycles using cointegration and common features |
title_full_unstemmed |
Estimating sectoral cycles using cointegration and common features |
title_sort |
Estimating sectoral cycles using cointegration and common features |
author |
Engle, R. F. |
author_facet |
Engle, R. F. Issler, João Victor |
author_role |
author |
author2 |
Issler, João Victor |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Engle, R. F. Issler, João Victor |
dc.subject.area.por.fl_str_mv |
Economia |
topic |
Economia Economia Ciclos econômicos |
dc.subject.bibliodata.por.fl_str_mv |
Economia Ciclos econômicos |
description |
This paper investigates the degree of short run and long run co-movement in U.S. sectoral output data by estimating sectoraI trends and cycles. A theoretical model based on Long and Plosser (1983) is used to derive a reduced form for sectoral output from first principles. Cointegration and common features (cycles) tests are performed; sectoral output data seem to share a relatively high number of common trends and a relatively low number of common cycles. A special trend-cycle decomposition of the data set is performed and the results indicate a very similar cyclical behavior across sectors and a very different behavior for trends. Indeed. sectors cyclical components appear as one. In a variance decomposition analysis, prominent sectors such as Manufacturing and Wholesale/Retail Trade exhibit relatively important transitory shocks. |
publishDate |
1994 |
dc.date.issued.fl_str_mv |
1994-03 |
dc.date.accessioned.fl_str_mv |
2008-05-13T15:26:35Z |
dc.date.available.fl_str_mv |
2008-05-13T15:26:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/556 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/556 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;232 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/3ac7c5ea-29ac-4313-a90b-1324bbb0ef7f/download https://repositorio.fgv.br/bitstreams/b4db4cd2-25b4-46a1-8128-1f716febc75b/download https://repositorio.fgv.br/bitstreams/7a86721d-0195-48dd-8ee6-36c334fd9152/download |
bitstream.checksum.fl_str_mv |
8927912c15e36199a4a857b1dc6e7762 b0f7e30402d81527c06ccbe79f00fa31 7ee8dca23bd190d87cfbd867ebd31006 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797802989322240 |