Essays in macroeconometrics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/30038 |
Resumo: | Esta tese consiste em três artigos independentes em macroeconometria. No primeiro artigo, nós propomos um modelo de rational-inattention, a fim de se analisar e estimar o comportamento de forecasters profissionais do Focus Survey, um sistema administrado pelo Banco Central do Brasil (BCB). Já no segundo artigo nós realizamos o nowcast da inflação do Brasil, oficialmente medido pelo IPCA. Nesse artigo, nós usamos métodos de aprendizado de máquina (machine learning), modelos de alta dimensionalidade e combinação de forecasts para melhorar a precisão do nowcast de inflação. Finalmente, o terceiro artigo investiga o potencial impacto que o problema de viés de seleção dos ativos pode apresentar em explicar o Equity Premium Puzzle. Nossa abordagem aplica simulação de Monte Carlo e estimação do coeficiente de aversão relativa ao risco via Método dos Momentos Generalizados. |
id |
FGV_9ee8769d60846d1ba609777c4a0a0558 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/30038 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Kira, GuilhermeEscolas::EPGEMoreira, Marcelo JovitaGaglianone, Wagner PiazzaZilberman, EduardoBonomo, Marco Antônio CésarIssler, João Victor2021-01-18T21:07:42Z2021-01-18T21:07:42Z2020-10-23https://hdl.handle.net/10438/30038Esta tese consiste em três artigos independentes em macroeconometria. No primeiro artigo, nós propomos um modelo de rational-inattention, a fim de se analisar e estimar o comportamento de forecasters profissionais do Focus Survey, um sistema administrado pelo Banco Central do Brasil (BCB). Já no segundo artigo nós realizamos o nowcast da inflação do Brasil, oficialmente medido pelo IPCA. Nesse artigo, nós usamos métodos de aprendizado de máquina (machine learning), modelos de alta dimensionalidade e combinação de forecasts para melhorar a precisão do nowcast de inflação. Finalmente, o terceiro artigo investiga o potencial impacto que o problema de viés de seleção dos ativos pode apresentar em explicar o Equity Premium Puzzle. Nossa abordagem aplica simulação de Monte Carlo e estimação do coeficiente de aversão relativa ao risco via Método dos Momentos Generalizados.This thesis consists of three independent essays in macroeconometrics. In the first paper, we propose a novel rational-inattention approach to model and estimate the forecasting behavior of professional forecasters in the Focus Survey, gathered by the Brazilian Central Bank (BCB). In the second paper we nowcast Brazilian inflation. In this paper we use machine learning methods, high dimensional models and combination of forecasts in order to improve the accuracy of inflation nowcasting. The third paper investigates the potential impact a selection-bias problem for assets has in explaining the Equity Premium Puzzle. Our approach uses Monte-Carlo simulations and we estimate the relative risk aversion coefficient using the Generalized Method of Moments.engAprendizado de máquinaCombinação de previsõesInflaçãoPrevisãoNowcastingFiltro de KalmanModelo de fatoresMonte CarloRational inattentionEquity premium puzzleMachine learningInflationForecastingEconomiaMacroeconomia - Modelos econométricosInflaçãoPrevisão econômicaMonte Carlo, Método deKalman, Filtragem deEssays in macroeconometricsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis2020-10-23info:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVLICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/78adb868-0abe-4639-998b-62b84dde6c60/downloaddfb340242cced38a6cca06c627998fa1MD52ORIGINALPDFPDFapplication/pdf3607188https://repositorio.fgv.br/bitstreams/5bb9c74e-a9f2-4ff8-9cbf-8f3b586c74fa/downloaddc41f71c2bdd828b789a41632ae18148MD53TEXTTese_Kira.pdf.txtTese_Kira.pdf.txtExtracted texttext/plain101530https://repositorio.fgv.br/bitstreams/1ef466f4-fc4e-401b-bb51-d21c68531681/download194f57f316cb8e41849f26ec589389fcMD56PDF.txtPDF.txtExtracted texttext/plain101530https://repositorio.fgv.br/bitstreams/d922c9b9-6a4f-48bb-b136-de1e1ef54533/download194f57f316cb8e41849f26ec589389fcMD58THUMBNAILTese_Kira.pdf.jpgTese_Kira.pdf.jpgGenerated Thumbnailimage/jpeg2805https://repositorio.fgv.br/bitstreams/a2dbde45-4a9a-4af4-add2-f314a7e52a95/downloadab869d565e099df5cf48a38a0be74777MD57PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg2805https://repositorio.fgv.br/bitstreams/67ce6ca4-6037-4421-bc50-42f0c3a8bd43/downloadab869d565e099df5cf48a38a0be74777MD5910438/300382024-07-08 18:34:01.203open.accessoai:repositorio.fgv.br:10438/30038https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T18:34:01Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Essays in macroeconometrics |
title |
Essays in macroeconometrics |
spellingShingle |
Essays in macroeconometrics Kira, Guilherme Aprendizado de máquina Combinação de previsões Inflação Previsão Nowcasting Filtro de Kalman Modelo de fatores Monte Carlo Rational inattention Equity premium puzzle Machine learning Inflation Forecasting Economia Macroeconomia - Modelos econométricos Inflação Previsão econômica Monte Carlo, Método de Kalman, Filtragem de |
title_short |
Essays in macroeconometrics |
title_full |
Essays in macroeconometrics |
title_fullStr |
Essays in macroeconometrics |
title_full_unstemmed |
Essays in macroeconometrics |
title_sort |
Essays in macroeconometrics |
author |
Kira, Guilherme |
author_facet |
Kira, Guilherme |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.member.none.fl_str_mv |
Moreira, Marcelo Jovita Gaglianone, Wagner Piazza Zilberman, Eduardo Bonomo, Marco Antônio César |
dc.contributor.author.fl_str_mv |
Kira, Guilherme |
dc.contributor.advisor1.fl_str_mv |
Issler, João Victor |
contributor_str_mv |
Issler, João Victor |
dc.subject.por.fl_str_mv |
Aprendizado de máquina Combinação de previsões Inflação Previsão Nowcasting Filtro de Kalman Modelo de fatores Monte Carlo |
topic |
Aprendizado de máquina Combinação de previsões Inflação Previsão Nowcasting Filtro de Kalman Modelo de fatores Monte Carlo Rational inattention Equity premium puzzle Machine learning Inflation Forecasting Economia Macroeconomia - Modelos econométricos Inflação Previsão econômica Monte Carlo, Método de Kalman, Filtragem de |
dc.subject.eng.fl_str_mv |
Rational inattention Equity premium puzzle Machine learning Inflation Forecasting |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Macroeconomia - Modelos econométricos Inflação Previsão econômica Monte Carlo, Método de Kalman, Filtragem de |
description |
Esta tese consiste em três artigos independentes em macroeconometria. No primeiro artigo, nós propomos um modelo de rational-inattention, a fim de se analisar e estimar o comportamento de forecasters profissionais do Focus Survey, um sistema administrado pelo Banco Central do Brasil (BCB). Já no segundo artigo nós realizamos o nowcast da inflação do Brasil, oficialmente medido pelo IPCA. Nesse artigo, nós usamos métodos de aprendizado de máquina (machine learning), modelos de alta dimensionalidade e combinação de forecasts para melhorar a precisão do nowcast de inflação. Finalmente, o terceiro artigo investiga o potencial impacto que o problema de viés de seleção dos ativos pode apresentar em explicar o Equity Premium Puzzle. Nossa abordagem aplica simulação de Monte Carlo e estimação do coeficiente de aversão relativa ao risco via Método dos Momentos Generalizados. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-10-23 |
dc.date.accessioned.fl_str_mv |
2021-01-18T21:07:42Z |
dc.date.available.fl_str_mv |
2021-01-18T21:07:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/30038 |
url |
https://hdl.handle.net/10438/30038 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/78adb868-0abe-4639-998b-62b84dde6c60/download https://repositorio.fgv.br/bitstreams/5bb9c74e-a9f2-4ff8-9cbf-8f3b586c74fa/download https://repositorio.fgv.br/bitstreams/1ef466f4-fc4e-401b-bb51-d21c68531681/download https://repositorio.fgv.br/bitstreams/d922c9b9-6a4f-48bb-b136-de1e1ef54533/download https://repositorio.fgv.br/bitstreams/a2dbde45-4a9a-4af4-add2-f314a7e52a95/download https://repositorio.fgv.br/bitstreams/67ce6ca4-6037-4421-bc50-42f0c3a8bd43/download |
bitstream.checksum.fl_str_mv |
dfb340242cced38a6cca06c627998fa1 dc41f71c2bdd828b789a41632ae18148 194f57f316cb8e41849f26ec589389fc 194f57f316cb8e41849f26ec589389fc ab869d565e099df5cf48a38a0be74777 ab869d565e099df5cf48a38a0be74777 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797616026124288 |