Essays in macroeconometrics

Detalhes bibliográficos
Autor(a) principal: Kira, Guilherme
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/30038
Resumo: Esta tese consiste em três artigos independentes em macroeconometria. No primeiro artigo, nós propomos um modelo de rational-inattention, a fim de se analisar e estimar o comportamento de forecasters profissionais do Focus Survey, um sistema administrado pelo Banco Central do Brasil (BCB). Já no segundo artigo nós realizamos o nowcast da inflação do Brasil, oficialmente medido pelo IPCA. Nesse artigo, nós usamos métodos de aprendizado de máquina (machine learning), modelos de alta dimensionalidade e combinação de forecasts para melhorar a precisão do nowcast de inflação. Finalmente, o terceiro artigo investiga o potencial impacto que o problema de viés de seleção dos ativos pode apresentar em explicar o Equity Premium Puzzle. Nossa abordagem aplica simulação de Monte Carlo e estimação do coeficiente de aversão relativa ao risco via Método dos Momentos Generalizados.
id FGV_9ee8769d60846d1ba609777c4a0a0558
oai_identifier_str oai:repositorio.fgv.br:10438/30038
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Kira, GuilhermeEscolas::EPGEMoreira, Marcelo JovitaGaglianone, Wagner PiazzaZilberman, EduardoBonomo, Marco Antônio CésarIssler, João Victor2021-01-18T21:07:42Z2021-01-18T21:07:42Z2020-10-23https://hdl.handle.net/10438/30038Esta tese consiste em três artigos independentes em macroeconometria. No primeiro artigo, nós propomos um modelo de rational-inattention, a fim de se analisar e estimar o comportamento de forecasters profissionais do Focus Survey, um sistema administrado pelo Banco Central do Brasil (BCB). Já no segundo artigo nós realizamos o nowcast da inflação do Brasil, oficialmente medido pelo IPCA. Nesse artigo, nós usamos métodos de aprendizado de máquina (machine learning), modelos de alta dimensionalidade e combinação de forecasts para melhorar a precisão do nowcast de inflação. Finalmente, o terceiro artigo investiga o potencial impacto que o problema de viés de seleção dos ativos pode apresentar em explicar o Equity Premium Puzzle. Nossa abordagem aplica simulação de Monte Carlo e estimação do coeficiente de aversão relativa ao risco via Método dos Momentos Generalizados.This thesis consists of three independent essays in macroeconometrics. In the first paper, we propose a novel rational-inattention approach to model and estimate the forecasting behavior of professional forecasters in the Focus Survey, gathered by the Brazilian Central Bank (BCB). In the second paper we nowcast Brazilian inflation. In this paper we use machine learning methods, high dimensional models and combination of forecasts in order to improve the accuracy of inflation nowcasting. The third paper investigates the potential impact a selection-bias problem for assets has in explaining the Equity Premium Puzzle. Our approach uses Monte-Carlo simulations and we estimate the relative risk aversion coefficient using the Generalized Method of Moments.engAprendizado de máquinaCombinação de previsõesInflaçãoPrevisãoNowcastingFiltro de KalmanModelo de fatoresMonte CarloRational inattentionEquity premium puzzleMachine learningInflationForecastingEconomiaMacroeconomia - Modelos econométricosInflaçãoPrevisão econômicaMonte Carlo, Método deKalman, Filtragem deEssays in macroeconometricsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis2020-10-23info:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVLICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/78adb868-0abe-4639-998b-62b84dde6c60/downloaddfb340242cced38a6cca06c627998fa1MD52ORIGINALPDFPDFapplication/pdf3607188https://repositorio.fgv.br/bitstreams/5bb9c74e-a9f2-4ff8-9cbf-8f3b586c74fa/downloaddc41f71c2bdd828b789a41632ae18148MD53TEXTTese_Kira.pdf.txtTese_Kira.pdf.txtExtracted texttext/plain101530https://repositorio.fgv.br/bitstreams/1ef466f4-fc4e-401b-bb51-d21c68531681/download194f57f316cb8e41849f26ec589389fcMD56PDF.txtPDF.txtExtracted texttext/plain101530https://repositorio.fgv.br/bitstreams/d922c9b9-6a4f-48bb-b136-de1e1ef54533/download194f57f316cb8e41849f26ec589389fcMD58THUMBNAILTese_Kira.pdf.jpgTese_Kira.pdf.jpgGenerated Thumbnailimage/jpeg2805https://repositorio.fgv.br/bitstreams/a2dbde45-4a9a-4af4-add2-f314a7e52a95/downloadab869d565e099df5cf48a38a0be74777MD57PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg2805https://repositorio.fgv.br/bitstreams/67ce6ca4-6037-4421-bc50-42f0c3a8bd43/downloadab869d565e099df5cf48a38a0be74777MD5910438/300382024-07-08 18:34:01.203open.accessoai:repositorio.fgv.br:10438/30038https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-07-08T18:34:01Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Essays in macroeconometrics
title Essays in macroeconometrics
spellingShingle Essays in macroeconometrics
Kira, Guilherme
Aprendizado de máquina
Combinação de previsões
Inflação
Previsão
Nowcasting
Filtro de Kalman
Modelo de fatores
Monte Carlo
Rational inattention
Equity premium puzzle
Machine learning
Inflation
Forecasting
Economia
Macroeconomia - Modelos econométricos
Inflação
Previsão econômica
Monte Carlo, Método de
Kalman, Filtragem de
title_short Essays in macroeconometrics
title_full Essays in macroeconometrics
title_fullStr Essays in macroeconometrics
title_full_unstemmed Essays in macroeconometrics
title_sort Essays in macroeconometrics
author Kira, Guilherme
author_facet Kira, Guilherme
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.member.none.fl_str_mv Moreira, Marcelo Jovita
Gaglianone, Wagner Piazza
Zilberman, Eduardo
Bonomo, Marco Antônio César
dc.contributor.author.fl_str_mv Kira, Guilherme
dc.contributor.advisor1.fl_str_mv Issler, João Victor
contributor_str_mv Issler, João Victor
dc.subject.por.fl_str_mv Aprendizado de máquina
Combinação de previsões
Inflação
Previsão
Nowcasting
Filtro de Kalman
Modelo de fatores
Monte Carlo
topic Aprendizado de máquina
Combinação de previsões
Inflação
Previsão
Nowcasting
Filtro de Kalman
Modelo de fatores
Monte Carlo
Rational inattention
Equity premium puzzle
Machine learning
Inflation
Forecasting
Economia
Macroeconomia - Modelos econométricos
Inflação
Previsão econômica
Monte Carlo, Método de
Kalman, Filtragem de
dc.subject.eng.fl_str_mv Rational inattention
Equity premium puzzle
Machine learning
Inflation
Forecasting
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Macroeconomia - Modelos econométricos
Inflação
Previsão econômica
Monte Carlo, Método de
Kalman, Filtragem de
description Esta tese consiste em três artigos independentes em macroeconometria. No primeiro artigo, nós propomos um modelo de rational-inattention, a fim de se analisar e estimar o comportamento de forecasters profissionais do Focus Survey, um sistema administrado pelo Banco Central do Brasil (BCB). Já no segundo artigo nós realizamos o nowcast da inflação do Brasil, oficialmente medido pelo IPCA. Nesse artigo, nós usamos métodos de aprendizado de máquina (machine learning), modelos de alta dimensionalidade e combinação de forecasts para melhorar a precisão do nowcast de inflação. Finalmente, o terceiro artigo investiga o potencial impacto que o problema de viés de seleção dos ativos pode apresentar em explicar o Equity Premium Puzzle. Nossa abordagem aplica simulação de Monte Carlo e estimação do coeficiente de aversão relativa ao risco via Método dos Momentos Generalizados.
publishDate 2020
dc.date.issued.fl_str_mv 2020-10-23
dc.date.accessioned.fl_str_mv 2021-01-18T21:07:42Z
dc.date.available.fl_str_mv 2021-01-18T21:07:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/30038
url https://hdl.handle.net/10438/30038
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/78adb868-0abe-4639-998b-62b84dde6c60/download
https://repositorio.fgv.br/bitstreams/5bb9c74e-a9f2-4ff8-9cbf-8f3b586c74fa/download
https://repositorio.fgv.br/bitstreams/1ef466f4-fc4e-401b-bb51-d21c68531681/download
https://repositorio.fgv.br/bitstreams/d922c9b9-6a4f-48bb-b136-de1e1ef54533/download
https://repositorio.fgv.br/bitstreams/a2dbde45-4a9a-4af4-add2-f314a7e52a95/download
https://repositorio.fgv.br/bitstreams/67ce6ca4-6037-4421-bc50-42f0c3a8bd43/download
bitstream.checksum.fl_str_mv dfb340242cced38a6cca06c627998fa1
dc41f71c2bdd828b789a41632ae18148
194f57f316cb8e41849f26ec589389fc
194f57f316cb8e41849f26ec589389fc
ab869d565e099df5cf48a38a0be74777
ab869d565e099df5cf48a38a0be74777
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797616026124288