A time series analysis of household income inequality in Brazil 1977-2013
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/17514 |
Resumo: | This paper analyses the evolution of household income inequality in Brazil from 1977 and 2013 using Brazilian National Household Survey data at aggregated and regional levels. Four income shares quantiles are analyzed: Top 1%, Top 10%, Bottom 10% and Bottom 50%. The novelty of our study is to use time series techniques to understand the phenomenon of income inequality within this period. We use Markov-Switching Regime Change Model (Hamilton [1989]) and State Space Unobservable Model (Harvey [1990]) techniques. Both strategies suggest that income concentration periods are related to low growth rates but high in ation rates as opposed to many developed countries (Piketty and Saez [2014]). Results from Markov-switching models suggest a detection of a new regime during rst decade of 2000's in poorest quantiles (bottom 10% and 50%) increasing their correspondent income shares. Moreover a regime of low shares started to prevail at the same time for Top 10% whereas for those at the Top 1% had prevailed a concentrated income share regime during eighties and nineties. We argue that Brazilian macroeconomic instability helped to produce a regime of low income shares at the bottom of the distribution. Our results suggest that recent inequality reduction in the shares of top 1% quantile can be seen as a back to normality instead of a new era whereas signi cant changes can be seen in other quantiles. State space models results also suggests that macroeconomic of the eighties had a severe e ects on Brazilian inequality whereas the dynamics of Top 1% income shares reinforce the return of 70's level considering aggregated data. Last, our estimates unveil important regional di erences in many quantiles mainly on the low brackets where poorer regions seem to have persistent income-inequality that take longer to be reduced. |
id |
FGV_b4c8f6d360431fe40a691f91ba682c0c |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/17514 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Caperoz, MarceloMarçal, Emerson FernandesMattos, EnlinsonEscolas::EESP2016-11-22T12:28:48Z2016-11-22T12:28:48Z2016TD 434http://hdl.handle.net/10438/17514This paper analyses the evolution of household income inequality in Brazil from 1977 and 2013 using Brazilian National Household Survey data at aggregated and regional levels. Four income shares quantiles are analyzed: Top 1%, Top 10%, Bottom 10% and Bottom 50%. The novelty of our study is to use time series techniques to understand the phenomenon of income inequality within this period. We use Markov-Switching Regime Change Model (Hamilton [1989]) and State Space Unobservable Model (Harvey [1990]) techniques. Both strategies suggest that income concentration periods are related to low growth rates but high in ation rates as opposed to many developed countries (Piketty and Saez [2014]). Results from Markov-switching models suggest a detection of a new regime during rst decade of 2000's in poorest quantiles (bottom 10% and 50%) increasing their correspondent income shares. Moreover a regime of low shares started to prevail at the same time for Top 10% whereas for those at the Top 1% had prevailed a concentrated income share regime during eighties and nineties. We argue that Brazilian macroeconomic instability helped to produce a regime of low income shares at the bottom of the distribution. Our results suggest that recent inequality reduction in the shares of top 1% quantile can be seen as a back to normality instead of a new era whereas signi cant changes can be seen in other quantiles. State space models results also suggests that macroeconomic of the eighties had a severe e ects on Brazilian inequality whereas the dynamics of Top 1% income shares reinforce the return of 70's level considering aggregated data. Last, our estimates unveil important regional di erences in many quantiles mainly on the low brackets where poorer regions seem to have persistent income-inequality that take longer to be reduced.engEESP - Textos para Discussão;TD 434Evolution income inequalityTime series analysisPublic policyEconomiaBrasil - Condições econômicasPolíticas públicasA time series analysis of household income inequality in Brazil 1977-2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.txtTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.txtExtracted texttext/plain64078https://repositorio.fgv.br/bitstreams/abf9a1b1-d023-4830-b1c3-06cb9790ead4/download316f524ab20f518f71df9dbef8248326MD57ORIGINALTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdfTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdfapplication/pdf3030604https://repositorio.fgv.br/bitstreams/9c104f81-c621-4d75-b648-f33118669f36/download6e44fbe5313785c77631bcabecbabc08MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/7469315f-4ea7-4f1b-aa81-f5cc35dfcec3/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.jpgTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.jpgGenerated Thumbnailimage/jpeg6640https://repositorio.fgv.br/bitstreams/20718c17-f295-4697-bde7-7b86d2eebfba/downloadea89d181afbf9e9170514508c389e722MD5810438/175142023-11-07 23:14:01.957open.accessoai:repositorio.fgv.br:10438/17514https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-07T23:14:01Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
A time series analysis of household income inequality in Brazil 1977-2013 |
title |
A time series analysis of household income inequality in Brazil 1977-2013 |
spellingShingle |
A time series analysis of household income inequality in Brazil 1977-2013 Caperoz, Marcelo Evolution income inequality Time series analysis Public policy Economia Brasil - Condições econômicas Políticas públicas |
title_short |
A time series analysis of household income inequality in Brazil 1977-2013 |
title_full |
A time series analysis of household income inequality in Brazil 1977-2013 |
title_fullStr |
A time series analysis of household income inequality in Brazil 1977-2013 |
title_full_unstemmed |
A time series analysis of household income inequality in Brazil 1977-2013 |
title_sort |
A time series analysis of household income inequality in Brazil 1977-2013 |
author |
Caperoz, Marcelo |
author_facet |
Caperoz, Marcelo Marçal, Emerson Fernandes Mattos, Enlinson |
author_role |
author |
author2 |
Marçal, Emerson Fernandes Mattos, Enlinson |
author2_role |
author author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.author.fl_str_mv |
Caperoz, Marcelo Marçal, Emerson Fernandes Mattos, Enlinson |
dc.subject.eng.fl_str_mv |
Evolution income inequality Time series analysis Public policy |
topic |
Evolution income inequality Time series analysis Public policy Economia Brasil - Condições econômicas Políticas públicas |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Brasil - Condições econômicas Políticas públicas |
description |
This paper analyses the evolution of household income inequality in Brazil from 1977 and 2013 using Brazilian National Household Survey data at aggregated and regional levels. Four income shares quantiles are analyzed: Top 1%, Top 10%, Bottom 10% and Bottom 50%. The novelty of our study is to use time series techniques to understand the phenomenon of income inequality within this period. We use Markov-Switching Regime Change Model (Hamilton [1989]) and State Space Unobservable Model (Harvey [1990]) techniques. Both strategies suggest that income concentration periods are related to low growth rates but high in ation rates as opposed to many developed countries (Piketty and Saez [2014]). Results from Markov-switching models suggest a detection of a new regime during rst decade of 2000's in poorest quantiles (bottom 10% and 50%) increasing their correspondent income shares. Moreover a regime of low shares started to prevail at the same time for Top 10% whereas for those at the Top 1% had prevailed a concentrated income share regime during eighties and nineties. We argue that Brazilian macroeconomic instability helped to produce a regime of low income shares at the bottom of the distribution. Our results suggest that recent inequality reduction in the shares of top 1% quantile can be seen as a back to normality instead of a new era whereas signi cant changes can be seen in other quantiles. State space models results also suggests that macroeconomic of the eighties had a severe e ects on Brazilian inequality whereas the dynamics of Top 1% income shares reinforce the return of 70's level considering aggregated data. Last, our estimates unveil important regional di erences in many quantiles mainly on the low brackets where poorer regions seem to have persistent income-inequality that take longer to be reduced. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-11-22T12:28:48Z |
dc.date.available.fl_str_mv |
2016-11-22T12:28:48Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/17514 |
dc.identifier.sici.none.fl_str_mv |
TD 434 |
identifier_str_mv |
TD 434 |
url |
http://hdl.handle.net/10438/17514 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
EESP - Textos para Discussão;TD 434 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/abf9a1b1-d023-4830-b1c3-06cb9790ead4/download https://repositorio.fgv.br/bitstreams/9c104f81-c621-4d75-b648-f33118669f36/download https://repositorio.fgv.br/bitstreams/7469315f-4ea7-4f1b-aa81-f5cc35dfcec3/download https://repositorio.fgv.br/bitstreams/20718c17-f295-4697-bde7-7b86d2eebfba/download |
bitstream.checksum.fl_str_mv |
316f524ab20f518f71df9dbef8248326 6e44fbe5313785c77631bcabecbabc08 dfb340242cced38a6cca06c627998fa1 ea89d181afbf9e9170514508c389e722 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797692969582592 |