A time series analysis of household income inequality in Brazil 1977-2013

Detalhes bibliográficos
Autor(a) principal: Caperoz, Marcelo
Data de Publicação: 2016
Outros Autores: Marçal, Emerson Fernandes, Mattos, Enlinson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/17514
Resumo: This paper analyses the evolution of household income inequality in Brazil from 1977 and 2013 using Brazilian National Household Survey data at aggregated and regional levels. Four income shares quantiles are analyzed: Top 1%, Top 10%, Bottom 10% and Bottom 50%. The novelty of our study is to use time series techniques to understand the phenomenon of income inequality within this period. We use Markov-Switching Regime Change Model (Hamilton [1989]) and State Space Unobservable Model (Harvey [1990]) techniques. Both strategies suggest that income concentration periods are related to low growth rates but high in ation rates as opposed to many developed countries (Piketty and Saez [2014]). Results from Markov-switching models suggest a detection of a new regime during rst decade of 2000's in poorest quantiles (bottom 10% and 50%) increasing their correspondent income shares. Moreover a regime of low shares started to prevail at the same time for Top 10% whereas for those at the Top 1% had prevailed a concentrated income share regime during eighties and nineties. We argue that Brazilian macroeconomic instability helped to produce a regime of low income shares at the bottom of the distribution. Our results suggest that recent inequality reduction in the shares of top 1% quantile can be seen as a back to normality instead of a new era whereas signi cant changes can be seen in other quantiles. State space models results also suggests that macroeconomic of the eighties had a severe e ects on Brazilian inequality whereas the dynamics of Top 1% income shares reinforce the return of 70's level considering aggregated data. Last, our estimates unveil important regional di erences in many quantiles mainly on the low brackets where poorer regions seem to have persistent income-inequality that take longer to be reduced.
id FGV_b4c8f6d360431fe40a691f91ba682c0c
oai_identifier_str oai:repositorio.fgv.br:10438/17514
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Caperoz, MarceloMarçal, Emerson FernandesMattos, EnlinsonEscolas::EESP2016-11-22T12:28:48Z2016-11-22T12:28:48Z2016TD 434http://hdl.handle.net/10438/17514This paper analyses the evolution of household income inequality in Brazil from 1977 and 2013 using Brazilian National Household Survey data at aggregated and regional levels. Four income shares quantiles are analyzed: Top 1%, Top 10%, Bottom 10% and Bottom 50%. The novelty of our study is to use time series techniques to understand the phenomenon of income inequality within this period. We use Markov-Switching Regime Change Model (Hamilton [1989]) and State Space Unobservable Model (Harvey [1990]) techniques. Both strategies suggest that income concentration periods are related to low growth rates but high in ation rates as opposed to many developed countries (Piketty and Saez [2014]). Results from Markov-switching models suggest a detection of a new regime during rst decade of 2000's in poorest quantiles (bottom 10% and 50%) increasing their correspondent income shares. Moreover a regime of low shares started to prevail at the same time for Top 10% whereas for those at the Top 1% had prevailed a concentrated income share regime during eighties and nineties. We argue that Brazilian macroeconomic instability helped to produce a regime of low income shares at the bottom of the distribution. Our results suggest that recent inequality reduction in the shares of top 1% quantile can be seen as a back to normality instead of a new era whereas signi cant changes can be seen in other quantiles. State space models results also suggests that macroeconomic of the eighties had a severe e ects on Brazilian inequality whereas the dynamics of Top 1% income shares reinforce the return of 70's level considering aggregated data. Last, our estimates unveil important regional di erences in many quantiles mainly on the low brackets where poorer regions seem to have persistent income-inequality that take longer to be reduced.engEESP - Textos para Discussão;TD 434Evolution income inequalityTime series analysisPublic policyEconomiaBrasil - Condições econômicasPolíticas públicasA time series analysis of household income inequality in Brazil 1977-2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.txtTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.txtExtracted texttext/plain64078https://repositorio.fgv.br/bitstreams/abf9a1b1-d023-4830-b1c3-06cb9790ead4/download316f524ab20f518f71df9dbef8248326MD57ORIGINALTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdfTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdfapplication/pdf3030604https://repositorio.fgv.br/bitstreams/9c104f81-c621-4d75-b648-f33118669f36/download6e44fbe5313785c77631bcabecbabc08MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/7469315f-4ea7-4f1b-aa81-f5cc35dfcec3/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.jpgTD 434 - MarceloCaperoz_Marcal_EnlinsonMattos.pdf.jpgGenerated Thumbnailimage/jpeg6640https://repositorio.fgv.br/bitstreams/20718c17-f295-4697-bde7-7b86d2eebfba/downloadea89d181afbf9e9170514508c389e722MD5810438/175142023-11-07 23:14:01.957open.accessoai:repositorio.fgv.br:10438/17514https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-07T23:14:01Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv A time series analysis of household income inequality in Brazil 1977-2013
title A time series analysis of household income inequality in Brazil 1977-2013
spellingShingle A time series analysis of household income inequality in Brazil 1977-2013
Caperoz, Marcelo
Evolution income inequality
Time series analysis
Public policy
Economia
Brasil - Condições econômicas
Políticas públicas
title_short A time series analysis of household income inequality in Brazil 1977-2013
title_full A time series analysis of household income inequality in Brazil 1977-2013
title_fullStr A time series analysis of household income inequality in Brazil 1977-2013
title_full_unstemmed A time series analysis of household income inequality in Brazil 1977-2013
title_sort A time series analysis of household income inequality in Brazil 1977-2013
author Caperoz, Marcelo
author_facet Caperoz, Marcelo
Marçal, Emerson Fernandes
Mattos, Enlinson
author_role author
author2 Marçal, Emerson Fernandes
Mattos, Enlinson
author2_role author
author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.author.fl_str_mv Caperoz, Marcelo
Marçal, Emerson Fernandes
Mattos, Enlinson
dc.subject.eng.fl_str_mv Evolution income inequality
Time series analysis
Public policy
topic Evolution income inequality
Time series analysis
Public policy
Economia
Brasil - Condições econômicas
Políticas públicas
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Brasil - Condições econômicas
Políticas públicas
description This paper analyses the evolution of household income inequality in Brazil from 1977 and 2013 using Brazilian National Household Survey data at aggregated and regional levels. Four income shares quantiles are analyzed: Top 1%, Top 10%, Bottom 10% and Bottom 50%. The novelty of our study is to use time series techniques to understand the phenomenon of income inequality within this period. We use Markov-Switching Regime Change Model (Hamilton [1989]) and State Space Unobservable Model (Harvey [1990]) techniques. Both strategies suggest that income concentration periods are related to low growth rates but high in ation rates as opposed to many developed countries (Piketty and Saez [2014]). Results from Markov-switching models suggest a detection of a new regime during rst decade of 2000's in poorest quantiles (bottom 10% and 50%) increasing their correspondent income shares. Moreover a regime of low shares started to prevail at the same time for Top 10% whereas for those at the Top 1% had prevailed a concentrated income share regime during eighties and nineties. We argue that Brazilian macroeconomic instability helped to produce a regime of low income shares at the bottom of the distribution. Our results suggest that recent inequality reduction in the shares of top 1% quantile can be seen as a back to normality instead of a new era whereas signi cant changes can be seen in other quantiles. State space models results also suggests that macroeconomic of the eighties had a severe e ects on Brazilian inequality whereas the dynamics of Top 1% income shares reinforce the return of 70's level considering aggregated data. Last, our estimates unveil important regional di erences in many quantiles mainly on the low brackets where poorer regions seem to have persistent income-inequality that take longer to be reduced.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-11-22T12:28:48Z
dc.date.available.fl_str_mv 2016-11-22T12:28:48Z
dc.date.issued.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/17514
dc.identifier.sici.none.fl_str_mv TD 434
identifier_str_mv TD 434
url http://hdl.handle.net/10438/17514
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv EESP - Textos para Discussão;TD 434
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/abf9a1b1-d023-4830-b1c3-06cb9790ead4/download
https://repositorio.fgv.br/bitstreams/9c104f81-c621-4d75-b648-f33118669f36/download
https://repositorio.fgv.br/bitstreams/7469315f-4ea7-4f1b-aa81-f5cc35dfcec3/download
https://repositorio.fgv.br/bitstreams/20718c17-f295-4697-bde7-7b86d2eebfba/download
bitstream.checksum.fl_str_mv 316f524ab20f518f71df9dbef8248326
6e44fbe5313785c77631bcabecbabc08
dfb340242cced38a6cca06c627998fa1
ea89d181afbf9e9170514508c389e722
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797692969582592