Laws of large numbers for non-additive probabilities
Autor(a) principal: | |
---|---|
Data de Publicação: | 1993 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/727 |
Resumo: | We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials. |
id |
FGV_c4e87d598c4135710e0f3638371934d8 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/727 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Dow, JamesWerlang, Sérgio Ribeiro da CostaEscolas::EPGEFGV2008-05-13T15:31:52Z2008-05-13T15:31:52Z1993-120104-8910http://hdl.handle.net/10438/727We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;226Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveisinfo:eu-repo/semantics/openAccessLaws of large numbers for non-additive probabilitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaLei dos grandes númerosProbabilidadesEstatística matemáticaEconomiareponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL000312488.pdf000312488.pdfapplication/pdf1044033https://repositorio.fgv.br/bitstreams/5e83654c-e8a5-4ad7-b6e5-6ba93ee58a6f/downloadeb0a1274d390773c2b4fefe0fcd34d2cMD51TEXT000312488.pdf.txt000312488.pdf.txtExtracted texttext/plain51677https://repositorio.fgv.br/bitstreams/bc7a8008-0492-4b9c-8808-293049016368/downloadaba677a2d1b8b61edd8ac43728f1412dMD56THUMBNAIL000312488.pdf.jpg000312488.pdf.jpgGenerated Thumbnailimage/jpeg2006https://repositorio.fgv.br/bitstreams/2ccf6396-5f77-4c6a-9337-802c6783f7bd/download8a0ce35da6f4526116e254590990eff9MD5710438/7272023-11-09 20:30:16.421open.accessoai:repositorio.fgv.br:10438/727https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-09T20:30:16Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false |
dc.title.eng.fl_str_mv |
Laws of large numbers for non-additive probabilities |
title |
Laws of large numbers for non-additive probabilities |
spellingShingle |
Laws of large numbers for non-additive probabilities Dow, James Economia Lei dos grandes números Probabilidades Estatística matemática Economia |
title_short |
Laws of large numbers for non-additive probabilities |
title_full |
Laws of large numbers for non-additive probabilities |
title_fullStr |
Laws of large numbers for non-additive probabilities |
title_full_unstemmed |
Laws of large numbers for non-additive probabilities |
title_sort |
Laws of large numbers for non-additive probabilities |
author |
Dow, James |
author_facet |
Dow, James Werlang, Sérgio Ribeiro da Costa |
author_role |
author |
author2 |
Werlang, Sérgio Ribeiro da Costa |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Dow, James Werlang, Sérgio Ribeiro da Costa |
dc.subject.area.por.fl_str_mv |
Economia |
topic |
Economia Lei dos grandes números Probabilidades Estatística matemática Economia |
dc.subject.bibliodata.por.fl_str_mv |
Lei dos grandes números Probabilidades Estatística matemática Economia |
description |
We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials. |
publishDate |
1993 |
dc.date.issued.fl_str_mv |
1993-12 |
dc.date.accessioned.fl_str_mv |
2008-05-13T15:31:52Z |
dc.date.available.fl_str_mv |
2008-05-13T15:31:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/727 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/727 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;226 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
publisher.none.fl_str_mv |
Escola de Pós-Graduação em Economia da FGV |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/5e83654c-e8a5-4ad7-b6e5-6ba93ee58a6f/download https://repositorio.fgv.br/bitstreams/bc7a8008-0492-4b9c-8808-293049016368/download https://repositorio.fgv.br/bitstreams/2ccf6396-5f77-4c6a-9337-802c6783f7bd/download |
bitstream.checksum.fl_str_mv |
eb0a1274d390773c2b4fefe0fcd34d2c aba677a2d1b8b61edd8ac43728f1412d 8a0ce35da6f4526116e254590990eff9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797843473793024 |