Laws of large numbers for non-additive probabilities

Detalhes bibliográficos
Autor(a) principal: Dow, James
Data de Publicação: 1993
Outros Autores: Werlang, Sérgio Ribeiro da Costa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/727
Resumo: We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.
id FGV_c4e87d598c4135710e0f3638371934d8
oai_identifier_str oai:repositorio.fgv.br:10438/727
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Dow, JamesWerlang, Sérgio Ribeiro da CostaEscolas::EPGEFGV2008-05-13T15:31:52Z2008-05-13T15:31:52Z1993-120104-8910http://hdl.handle.net/10438/727We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.engEscola de Pós-Graduação em Economia da FGVEnsaios Econômicos;226Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveisinfo:eu-repo/semantics/openAccessLaws of large numbers for non-additive probabilitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleEconomiaLei dos grandes númerosProbabilidadesEstatística matemáticaEconomiareponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINAL000312488.pdf000312488.pdfapplication/pdf1044033https://repositorio.fgv.br/bitstreams/5e83654c-e8a5-4ad7-b6e5-6ba93ee58a6f/downloadeb0a1274d390773c2b4fefe0fcd34d2cMD51TEXT000312488.pdf.txt000312488.pdf.txtExtracted texttext/plain51677https://repositorio.fgv.br/bitstreams/bc7a8008-0492-4b9c-8808-293049016368/downloadaba677a2d1b8b61edd8ac43728f1412dMD56THUMBNAIL000312488.pdf.jpg000312488.pdf.jpgGenerated Thumbnailimage/jpeg2006https://repositorio.fgv.br/bitstreams/2ccf6396-5f77-4c6a-9337-802c6783f7bd/download8a0ce35da6f4526116e254590990eff9MD5710438/7272023-11-09 20:30:16.421open.accessoai:repositorio.fgv.br:10438/727https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-09T20:30:16Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)false
dc.title.eng.fl_str_mv Laws of large numbers for non-additive probabilities
title Laws of large numbers for non-additive probabilities
spellingShingle Laws of large numbers for non-additive probabilities
Dow, James
Economia
Lei dos grandes números
Probabilidades
Estatística matemática
Economia
title_short Laws of large numbers for non-additive probabilities
title_full Laws of large numbers for non-additive probabilities
title_fullStr Laws of large numbers for non-additive probabilities
title_full_unstemmed Laws of large numbers for non-additive probabilities
title_sort Laws of large numbers for non-additive probabilities
author Dow, James
author_facet Dow, James
Werlang, Sérgio Ribeiro da Costa
author_role author
author2 Werlang, Sérgio Ribeiro da Costa
author2_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EPGE
dc.contributor.affiliation.none.fl_str_mv FGV
dc.contributor.author.fl_str_mv Dow, James
Werlang, Sérgio Ribeiro da Costa
dc.subject.area.por.fl_str_mv Economia
topic Economia
Lei dos grandes números
Probabilidades
Estatística matemática
Economia
dc.subject.bibliodata.por.fl_str_mv Lei dos grandes números
Probabilidades
Estatística matemática
Economia
description We apply the concept of exchangeable random variables to the case of non-additive robability distributions exhibiting ncertainty aversion, and in the lass generated bya convex core convex non-additive probabilities, ith a convex core). We are able to rove two versions of the law of arge numbers (de Finetti's heorems). By making use of two efinitions. of independence we rove two versions of the strong law f large numbers. It turns out that e cannot assure the convergence of he sample averages to a constant. e then modal the case there is a true' probability distribution ehind the successive realizations of the uncertain random variable. In this case convergence occurs. This result is important because it renders true the intuition that it is possible 'to learn' the 'true' additive distribution behind an uncertain event if one repeatedly observes it (a sufficiently large number of times). We also provide a conjecture regarding the 'Iearning' (or updating) process above, and prove a partia I result for the case of Dempster-Shafer updating rule and binomial trials.
publishDate 1993
dc.date.issued.fl_str_mv 1993-12
dc.date.accessioned.fl_str_mv 2008-05-13T15:31:52Z
dc.date.available.fl_str_mv 2008-05-13T15:31:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/727
dc.identifier.issn.none.fl_str_mv 0104-8910
identifier_str_mv 0104-8910
url http://hdl.handle.net/10438/727
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv Ensaios Econômicos;226
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
publisher.none.fl_str_mv Escola de Pós-Graduação em Economia da FGV
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/5e83654c-e8a5-4ad7-b6e5-6ba93ee58a6f/download
https://repositorio.fgv.br/bitstreams/bc7a8008-0492-4b9c-8808-293049016368/download
https://repositorio.fgv.br/bitstreams/2ccf6396-5f77-4c6a-9337-802c6783f7bd/download
bitstream.checksum.fl_str_mv eb0a1274d390773c2b4fefe0fcd34d2c
aba677a2d1b8b61edd8ac43728f1412d
8a0ce35da6f4526116e254590990eff9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797843473793024