Existence and uniqueness of a fixed-point for local contractions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/1620 |
Resumo: | This paper proves the existence and uniqueness of a fixed-point for local contractions without assuming the family of contraction coefficients to be uniformly bounded away from 1. More importantly it shows how this fixed-point result can apply to study existence and uniqueness of solutions to some recursive equations that arise in economic dynamics. |
id |
FGV_d7134fdcb607bce98d6338d9937aec30 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/1620 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Vailakis, YiannisMartins-da-Rocha, Victor FilipeEscolas::EPGEFGV2008-05-15T20:48:20Z2010-09-23T18:58:23Z2008-05-15T20:48:20Z2010-09-23T18:58:23Z2008-05-15http://hdl.handle.net/10438/1620This paper proves the existence and uniqueness of a fixed-point for local contractions without assuming the family of contraction coefficients to be uniformly bounded away from 1. More importantly it shows how this fixed-point result can apply to study existence and uniqueness of solutions to some recursive equations that arise in economic dynamics.engFundação Getulio Vargas. Escola de Pós-graduação em EconomiaEnsaios Econômicos;677Local contractionFixed-point theoremEconomiaEconomiaTeoria do ponto fixoExistence and uniqueness of a fixed-point for local contractionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTHUMBNAILlocal-contraction-23-11-09.pdf.jpglocal-contraction-23-11-09.pdf.jpgGenerated Thumbnailimage/jpeg5210https://repositorio.fgv.br/bitstreams/026774c2-863b-44a5-881f-fd890c22e94d/download1119dea74d12a251e9baf9ca6fbd1d5dMD56ECMA-MS7920-Supplemental-Material-07-12-10.pdf.jpgECMA-MS7920-Supplemental-Material-07-12-10.pdf.jpgGenerated Thumbnailimage/jpeg4148https://repositorio.fgv.br/bitstreams/3c615c57-c5b7-40a5-915f-852ebe9993ba/download298dca87a63f0110af4e3544f1e163e9MD515TEXTlocal-contraction-23-11-09.pdf.txtlocal-contraction-23-11-09.pdf.txtExtracted Texttext/plain69939https://repositorio.fgv.br/bitstreams/2277f215-8d3b-4ea7-b530-2be19fcec0cf/download4af3394558f70c4775eaf29e05fedcd0MD55ECMA-MS7920-Supplemental-Material-07-12-10.pdf.txtECMA-MS7920-Supplemental-Material-07-12-10.pdf.txtExtracted texttext/plain71317https://repositorio.fgv.br/bitstreams/65b5fab2-dcd0-450f-8332-32f1ea7b8163/downloadb07cc0fa4b38a7a15e5271297c88eed0MD514LICENSElicense.txttext/plain4886https://repositorio.fgv.br/bitstreams/80a8bc5e-8bce-4e86-8bab-7a3285706b1e/download84ddee6ab98ecd08faab3b93b4e5bb79MD54ORIGINALECMA-MS7920-Supplemental-Material-07-12-10.pdfECMA-MS7920-Supplemental-Material-07-12-10.pdfapplication/pdf378994https://repositorio.fgv.br/bitstreams/d454d165-e3a9-4f06-9f55-c4d0c8c9eb1b/download9e22025c2a20d61e3528311d6590e12aMD51010438/16202023-11-08 23:48:52.636open.accessoai:repositorio.fgv.br:10438/1620https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-08T23:48:52Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseTGljZW5zZSBncmFudGVkIGJ5IENhcmxvcyBPbGl2ZWlyYSAoY2FybG9zLm9saXZlaXJhQGZndi5icikgb24gMjAwOC0wNS0xNVQyMDo0ODoyMFogKEdNVCk6Cg0KVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTw0KUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQ0KDQoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vDQpwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdQ0KZGlyZWl0b3MgY29uZXhvcyByZWZlcmVudGVzIMOgIHRvdGFsaWRhZGUgZGEgT2JyYSBvcmEgZGVwb3NpdGFkYSBlbQ0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvDQpkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpDQo5LjYwOS85OC4gTsOjbyBzZW5kbyBlc3RlIG8gY2Fzbywgdm9jw6ogYXNzZWd1cmEgdGVyIG9idGlkbywgZGlyZXRhbWVudGUNCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlDQpkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MNCmFmZXRhZG9zIHBlbGEgYXNzaW5hdHVyYSBkb3MgcHJlc2VudGVzIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvLCBkZQ0KbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZMOnw6NvIEdldHVsaW8gVmFyZ2FzIGUgc2V1cw0KZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbw0KbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYQ0KZW0gdmluY3VsYcOnw6NvIGEgcXVhaXNxdWVyIHNlcnZpw6dvcyBkZSBidXNjYSBlIGRpc3RyaWJ1acOnw6NvIGRlIGNvbnRlw7pkbw0KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MNCnBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLg0KDQoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQ0KdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMNCm91IHF1YWxxdWVyIG91dHJhIGNvbnRyYXByZXN0YcOnw6NvLCBwZWN1bmnDoXJpYSBvdSBuw6NvLCDDoCBGdW5kYcOnw6NvDQpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQ0KZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldQ0KcmVzdW1vL2Fic3RyYWN0LCBwb3IgbWVpb3MgZWxldHLDtG5pY29zLCBubyBzaXRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbA0KRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uDQoNCjMuIEEgcHJlc2VudGUgbGljZW7Dp2EgdGFtYsOpbSBhYnJhbmdlLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zDQpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwNCmVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgDQpyZXByZXNlbnRhw6fDo28gcMO6YmxpY2EgZS9vdSBleGVjdcOnw6NvIHDDumJsaWNhLCBiZW0gY29tbyBxdWFscXVlciBvdXRyYQ0KbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLA0Kbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlDQpmb3IgYXBsaWPDoXZlbCBhb3Mgc2VydmnDp29zIHByZXN0YWRvcyBhbyBww7pibGljbyBwZWxhIEJpYmxpb3RlY2ENClZpcnR1YWwgRkdWLg0KDQo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vDQppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQ0KZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZQ0KZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbQ0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4NCg0KNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvcg0KaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqg0Kb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtDQppbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlDQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgDQpwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4NCg0KNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhDQpDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUNCkRvY3VtZW50YXRpb24gTGljZW5zZSAocXVhbHF1ZXIgdmVyc8OjbyksIG91IG91dHJhIGxpY2Vuw6dhIHF1YWxpZmljYWRhDQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MNCihkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlDQpEZWZpbml0aW9uIChkaXNwb27DrXZlbCBlbTogaHR0cDovL3d3dy5nbnUub3JnL3BoaWxvc29waHkvZnJlZS1zdy5odG1sKSwgDQpvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQ0KY29udGXDumRvIGxlZ8OtdmVsIHBvciBzZXJlcyBodW1hbm9zIGUsIHNlIHBvc3PDrXZlbCwgdGFtYsOpbSBlbSBtZXRhZGFkb3MNCmxlZ8OtdmVpcyBwb3IgbcOhcXVpbmEuIEEgaW5kaWNhw6fDo28gZGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBkZXZlIHNlcg0KYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWENCmludGVncmFsLg0KDQoNCkFvIGNvbmNsdWlyIGEgcHJlc2VudGUgZXRhcGEgZSBhcyBldGFwYXMgc3Vic2Vxw7xlbnRlcyBkbyBwcm9jZXNzbyBkZQ0Kc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlDQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcw0Kc2VtIGZhemVyIHF1YWxxdWVyIHJlc2VydmEgZSBub3ZhbWVudGUgY29uZmlybWFuZG8gcXVlIGN1bXByZSBvcw0KcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4NCg0KSGF2ZW5kbyBxdWFscXVlciBkaXNjb3Jkw6JuY2lhIGVtIHJlbGHDp8OjbyBhb3MgcHJlc2VudGVzIHRlcm1vcyBvdSBuw6NvDQpzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlcg0KaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvDQplcXVpdmFsZSDDoCBhc3NpbmF0dXJhIGRlc3RlIGRvY3VtZW50bywgY29tIHRvZGFzIGFzIGNvbnNlccO8w6puY2lhcyBuZWxlDQpwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvDQpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcw0KYXBsaWPDoXZlaXMgw6AgT2JyYSBkZXBvc2l0YWRhIGR1cmFudGUgZXN0ZSBwcm9jZXNzbywgb3UgY2FzbyBuw6NvIHRlbmhhDQpvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUNCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLg0KDQoNClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUNCm8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgZW50cmUgZW0gY29udGF0byBjb20gW25jZXBnZUBmZ3YuYnJdDQo= |
dc.title.eng.fl_str_mv |
Existence and uniqueness of a fixed-point for local contractions |
title |
Existence and uniqueness of a fixed-point for local contractions |
spellingShingle |
Existence and uniqueness of a fixed-point for local contractions Vailakis, Yiannis Local contraction Fixed-point theorem Economia Economia Teoria do ponto fixo |
title_short |
Existence and uniqueness of a fixed-point for local contractions |
title_full |
Existence and uniqueness of a fixed-point for local contractions |
title_fullStr |
Existence and uniqueness of a fixed-point for local contractions |
title_full_unstemmed |
Existence and uniqueness of a fixed-point for local contractions |
title_sort |
Existence and uniqueness of a fixed-point for local contractions |
author |
Vailakis, Yiannis |
author_facet |
Vailakis, Yiannis Martins-da-Rocha, Victor Filipe |
author_role |
author |
author2 |
Martins-da-Rocha, Victor Filipe |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Vailakis, Yiannis Martins-da-Rocha, Victor Filipe |
dc.subject.por.fl_str_mv |
Local contraction Fixed-point theorem |
topic |
Local contraction Fixed-point theorem Economia Economia Teoria do ponto fixo |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Economia Teoria do ponto fixo |
description |
This paper proves the existence and uniqueness of a fixed-point for local contractions without assuming the family of contraction coefficients to be uniformly bounded away from 1. More importantly it shows how this fixed-point result can apply to study existence and uniqueness of solutions to some recursive equations that arise in economic dynamics. |
publishDate |
2008 |
dc.date.accessioned.fl_str_mv |
2008-05-15T20:48:20Z 2010-09-23T18:58:23Z |
dc.date.available.fl_str_mv |
2008-05-15T20:48:20Z 2010-09-23T18:58:23Z |
dc.date.issued.fl_str_mv |
2008-05-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/1620 |
url |
http://hdl.handle.net/10438/1620 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;677 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/026774c2-863b-44a5-881f-fd890c22e94d/download https://repositorio.fgv.br/bitstreams/3c615c57-c5b7-40a5-915f-852ebe9993ba/download https://repositorio.fgv.br/bitstreams/2277f215-8d3b-4ea7-b530-2be19fcec0cf/download https://repositorio.fgv.br/bitstreams/65b5fab2-dcd0-450f-8332-32f1ea7b8163/download https://repositorio.fgv.br/bitstreams/80a8bc5e-8bce-4e86-8bab-7a3285706b1e/download https://repositorio.fgv.br/bitstreams/d454d165-e3a9-4f06-9f55-c4d0c8c9eb1b/download |
bitstream.checksum.fl_str_mv |
1119dea74d12a251e9baf9ca6fbd1d5d 298dca87a63f0110af4e3544f1e163e9 4af3394558f70c4775eaf29e05fedcd0 b07cc0fa4b38a7a15e5271297c88eed0 84ddee6ab98ecd08faab3b93b4e5bb79 9e22025c2a20d61e3528311d6590e12a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797654707044352 |