Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/13540 |
Resumo: | Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered. |
id |
FGV_d99d95330795951069251c92b53644ec |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/13540 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Guillen, Osmani Teixeira CarvalhoHecq, AlainIssler, João VictorSaraiva, Diogo Vinícius MenezesEscolas::EPGEFGV2015-03-20T17:03:20Z2015-03-20T17:03:20Z2015-02-260104-8910http://hdl.handle.net/10438/13540Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered.engFundação Getulio Vargas. Escola de Pós-graduação em EconomiaEnsaios Econômicos;763ForecastingMultivariate modelsVector autoregression (VAR)Present-value restrictionsCommon cyclesCointegrationInterest ratesPrices and dividendsEconomiaEconomiaForecasting multivariate time series under present-value-model short- and long-run co-movement restrictionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/65e1da9f-f973-4a59-ad00-ba956e790f07/downloaddfb340242cced38a6cca06c627998fa1MD52ORIGINALForecasting-Multivariate-Time-Series-under-Present-Value-Model-Short--and-Long-run-Co-movement-Restrictions.pdfForecasting-Multivariate-Time-Series-under-Present-Value-Model-Short--and-Long-run-Co-movement-Restrictions.pdfMain Paperapplication/pdf519516https://repositorio.fgv.br/bitstreams/e6bd7602-d9ec-4628-bc0c-d4a9553c614e/downloade3410b85b90f4a2310b05ed51d45ded8MD53TEXTForecasting-Multivariate-Time-Series-under-Present-Value-Model-Short--and-Long-run-Co-movement-Restrictions.pdf.txtForecasting-Multivariate-Time-Series-under-Present-Value-Model-Short--and-Long-run-Co-movement-Restrictions.pdf.txtExtracted texttext/plain89447https://repositorio.fgv.br/bitstreams/94a2d2da-0f50-45af-9254-a06157b8def5/download0f867e73d04cd10622d261df18ced783MD58THUMBNAILForecasting-Multivariate-Time-Series-under-Present-Value-Model-Short--and-Long-run-Co-movement-Restrictions.pdf.jpgForecasting-Multivariate-Time-Series-under-Present-Value-Model-Short--and-Long-run-Co-movement-Restrictions.pdf.jpgGenerated Thumbnailimage/jpeg4374https://repositorio.fgv.br/bitstreams/2745c716-2638-4e3f-bcc0-798cd83f3f09/downloade01577139b7dfcb23ea8d977b5da364dMD5910438/135402023-11-09 23:27:03.666open.accessoai:repositorio.fgv.br:10438/13540https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-09T23:27:03Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
title |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
spellingShingle |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions Guillen, Osmani Teixeira Carvalho Forecasting Multivariate models Vector autoregression (VAR) Present-value restrictions Common cycles Cointegration Interest rates Prices and dividends Economia Economia |
title_short |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
title_full |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
title_fullStr |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
title_full_unstemmed |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
title_sort |
Forecasting multivariate time series under present-value-model short- and long-run co-movement restrictions |
author |
Guillen, Osmani Teixeira Carvalho |
author_facet |
Guillen, Osmani Teixeira Carvalho Hecq, Alain Issler, João Victor Saraiva, Diogo Vinícius Menezes |
author_role |
author |
author2 |
Hecq, Alain Issler, João Victor Saraiva, Diogo Vinícius Menezes |
author2_role |
author author author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Guillen, Osmani Teixeira Carvalho Hecq, Alain Issler, João Victor Saraiva, Diogo Vinícius Menezes |
dc.subject.eng.fl_str_mv |
Forecasting Multivariate models Vector autoregression (VAR) Present-value restrictions Common cycles Cointegration Interest rates Prices and dividends |
topic |
Forecasting Multivariate models Vector autoregression (VAR) Present-value restrictions Common cycles Cointegration Interest rates Prices and dividends Economia Economia |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Economia |
description |
Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered. |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-03-20T17:03:20Z |
dc.date.available.fl_str_mv |
2015-03-20T17:03:20Z |
dc.date.issued.fl_str_mv |
2015-02-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/13540 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/13540 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;763 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/65e1da9f-f973-4a59-ad00-ba956e790f07/download https://repositorio.fgv.br/bitstreams/e6bd7602-d9ec-4628-bc0c-d4a9553c614e/download https://repositorio.fgv.br/bitstreams/94a2d2da-0f50-45af-9254-a06157b8def5/download https://repositorio.fgv.br/bitstreams/2745c716-2638-4e3f-bcc0-798cd83f3f09/download |
bitstream.checksum.fl_str_mv |
dfb340242cced38a6cca06c627998fa1 e3410b85b90f4a2310b05ed51d45ded8 0f867e73d04cd10622d261df18ced783 e01577139b7dfcb23ea8d977b5da364d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797861806047232 |