Aplicação de redes neurais na classificação de rentabilidade futura de empresas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/2628 |
Resumo: | The motivation of this work is to verify the efficiency of neural networks as a tool for classifying forecasts of companies’ return on equity, so that they can be used in order to provide support for the development of investment decision support systems. The results obtained by the proposed neural networks mode are compared to those obtained by the use of the classic multiple linear regression as a minimum reference and, as a benchmark, to those obtained via ordinal logistic multiple regression. In this work, we gathered top 1000 companies’ financial and accounting data, annually listed by Melhores e Maiores – Exame publication (Editora Abril), from 1996 to 2006. The three models were built using data relative to the period between 1996 and 2004. Using the 2005 data as input in order to forecast companies’ classification in 2006, the three models’ outputs were compared to the observed 2006 classification, and the neural network model yielded the best results. |
id |
FGV_e1e00f1ea02292dabac8cc2df6889148 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/2628 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Matsumoto, Élia YathieEscolas::EESPRochman, Ricardo RatnerPedreira, Carlos EduardoPinto, Afonso de Campos2010-04-20T21:00:14Z2010-04-20T21:00:14Z2008-11-26MATSUMOTO, Élia Yathie. Aplicação de redes neurais na classificação de rentabilidade futura de empresas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008.http://hdl.handle.net/10438/2628The motivation of this work is to verify the efficiency of neural networks as a tool for classifying forecasts of companies’ return on equity, so that they can be used in order to provide support for the development of investment decision support systems. The results obtained by the proposed neural networks mode are compared to those obtained by the use of the classic multiple linear regression as a minimum reference and, as a benchmark, to those obtained via ordinal logistic multiple regression. In this work, we gathered top 1000 companies’ financial and accounting data, annually listed by Melhores e Maiores – Exame publication (Editora Abril), from 1996 to 2006. The three models were built using data relative to the period between 1996 and 2004. Using the 2005 data as input in order to forecast companies’ classification in 2006, the three models’ outputs were compared to the observed 2006 classification, and the neural network model yielded the best results.Este trabalho tem por motivação evidenciar a eficiência de redes neurais na classificação de rentabilidade futura de empresas, e desta forma, prover suporte para o desenvolvimento de sistemas de apoio a tomada de decisão de investimentos. Para serem comparados com o modelo de redes neurais, foram escolhidos o modelo clássico de regressão linear múltipla, como referência mínima, e o de regressão logística ordenada, como marca comparativa de desempenho (benchmark). Neste texto, extraímos dados financeiros e contábeis das 1000 melhores empresas listadas, anualmente, entre 1996 e 2006, na publicação Melhores e Maiores – Exame (Editora Abril). Os três modelos foram construídos tendo como base as informações das empresas entre 1996 e 2005. Dadas as informações de 2005 para estimar a classificação das empresas em 2006, os resultados dos três modelos foram comparados com as classificações observadas em 2006, e o modelo de redes neurais gerou o melhor resultado.porFinançasClassificação de padrões (Computação)EconomiaRedes neurais (Computação)Investimentos - Processo decisórioEmpresas - LucratividadeAplicação de redes neurais na classificação de rentabilidade futura de empresasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTHUMBNAILElia Yathie Matsumoto.pdf.jpgElia Yathie Matsumoto.pdf.jpgGenerated Thumbnailimage/jpeg2361https://repositorio.fgv.br/bitstreams/aacc84e1-e8aa-45b9-ac75-89de3d49f164/downloadde33385de1e73a61258fd07f2c87ed4fMD57TEXTElia Yathie Matsumoto.pdf.txtElia Yathie Matsumoto.pdf.txtExtracted texttext/plain75597https://repositorio.fgv.br/bitstreams/cce4852a-c24f-4389-93d7-5816246834bc/download6070ec327d767c0d10895436190dca47MD56ORIGINALElia Yathie Matsumoto.pdfapplication/pdf484683https://repositorio.fgv.br/bitstreams/1d096b7e-4cef-4e53-a7a2-281f4927fbf5/download2268d20eab93b50c0616502c15d727eeMD53LICENSElicense.txttext/plain4886https://repositorio.fgv.br/bitstreams/99b56382-7928-4f86-97f9-0b8fbae3e8b3/download9153e47b5c207ec70471b7858e3f91c7MD5410438/26282023-11-27 11:38:24.038open.accessoai:repositorio.fgv.br:10438/2628https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-27T11:38:24Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseTGljZW5zZSBncmFudGVkIGJ5IEx1Y2lhbmEgR2FicmllbCAobHVjaWFuYS5nYWJyaWVsQGZndi5icikgb24gMjAwOS0wNS0xOFQxOTo0NDo0MFogKEdNVCk6Cg0KVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTw0KUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQ0KDQoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vDQpwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdQ0KZGlyZWl0b3MgY29uZXhvcyByZWZlcmVudGVzIMOgIHRvdGFsaWRhZGUgZGEgT2JyYSBvcmEgZGVwb3NpdGFkYSBlbQ0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvDQpkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpDQo5LjYwOS85OC4gTsOjbyBzZW5kbyBlc3RlIG8gY2Fzbywgdm9jw6ogYXNzZWd1cmEgdGVyIG9idGlkbywgZGlyZXRhbWVudGUNCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlDQpkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MNCmFmZXRhZG9zIHBlbGEgYXNzaW5hdHVyYSBkb3MgcHJlc2VudGVzIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvLCBkZQ0KbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZMOnw6NvIEdldHVsaW8gVmFyZ2FzIGUgc2V1cw0KZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbw0KbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYQ0KZW0gdmluY3VsYcOnw6NvIGEgcXVhaXNxdWVyIHNlcnZpw6dvcyBkZSBidXNjYSBlIGRpc3RyaWJ1acOnw6NvIGRlIGNvbnRlw7pkbw0KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MNCnBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLg0KDQoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQ0KdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMNCm91IHF1YWxxdWVyIG91dHJhIGNvbnRyYXByZXN0YcOnw6NvLCBwZWN1bmnDoXJpYSBvdSBuw6NvLCDDoCBGdW5kYcOnw6NvDQpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQ0KZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldQ0KcmVzdW1vL2Fic3RyYWN0LCBwb3IgbWVpb3MgZWxldHLDtG5pY29zLCBubyBzaXRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbA0KRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uDQoNCjMuIEEgcHJlc2VudGUgbGljZW7Dp2EgdGFtYsOpbSBhYnJhbmdlLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zDQpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwNCmVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgDQpyZXByZXNlbnRhw6fDo28gcMO6YmxpY2EgZS9vdSBleGVjdcOnw6NvIHDDumJsaWNhLCBiZW0gY29tbyBxdWFscXVlciBvdXRyYQ0KbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLA0Kbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlDQpmb3IgYXBsaWPDoXZlbCBhb3Mgc2VydmnDp29zIHByZXN0YWRvcyBhbyBww7pibGljbyBwZWxhIEJpYmxpb3RlY2ENClZpcnR1YWwgRkdWLg0KDQo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vDQppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQ0KZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZQ0KZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbQ0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4NCg0KNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvcg0KaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqg0Kb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtDQppbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlDQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgDQpwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4NCg0KNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhDQpDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUNCkRvY3VtZW50YXRpb24gTGljZW5zZSAocXVhbHF1ZXIgdmVyc8OjbyksIG91IG91dHJhIGxpY2Vuw6dhIHF1YWxpZmljYWRhDQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MNCihkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlDQpEZWZpbml0aW9uIChkaXNwb27DrXZlbCBlbTogaHR0cDovL3d3dy5nbnUub3JnL3BoaWxvc29waHkvZnJlZS1zdy5odG1sKSwgDQpvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQ0KY29udGXDumRvIGxlZ8OtdmVsIHBvciBzZXJlcyBodW1hbm9zIGUsIHNlIHBvc3PDrXZlbCwgdGFtYsOpbSBlbSBtZXRhZGFkb3MNCmxlZ8OtdmVpcyBwb3IgbcOhcXVpbmEuIEEgaW5kaWNhw6fDo28gZGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBkZXZlIHNlcg0KYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWENCmludGVncmFsLg0KDQoNCkFvIGNvbmNsdWlyIGEgcHJlc2VudGUgZXRhcGEgZSBhcyBldGFwYXMgc3Vic2Vxw7xlbnRlcyBkbyBwcm9jZXNzbyBkZQ0Kc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlDQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcw0Kc2VtIGZhemVyIHF1YWxxdWVyIHJlc2VydmEgZSBub3ZhbWVudGUgY29uZmlybWFuZG8gcXVlIGN1bXByZSBvcw0KcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4NCg0KSGF2ZW5kbyBxdWFscXVlciBkaXNjb3Jkw6JuY2lhIGVtIHJlbGHDp8OjbyBhb3MgcHJlc2VudGVzIHRlcm1vcyBvdSBuw6NvDQpzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlcg0KaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvDQplcXVpdmFsZSDDoCBhc3NpbmF0dXJhIGRlc3RlIGRvY3VtZW50bywgY29tIHRvZGFzIGFzIGNvbnNlccO8w6puY2lhcyBuZWxlDQpwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvDQpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcw0KYXBsaWPDoXZlaXMgw6AgT2JyYSBkZXBvc2l0YWRhIGR1cmFudGUgZXN0ZSBwcm9jZXNzbywgb3UgY2FzbyBuw6NvIHRlbmhhDQpvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUNCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLg0KDQoNClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUNCm8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgZW50cmUgZW0gY29udGF0byBjb20gW25jZXBnZUBmZ3YuYnJdDQo= |
dc.title.por.fl_str_mv |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
title |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
spellingShingle |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas Matsumoto, Élia Yathie Finanças Classificação de padrões (Computação) Economia Redes neurais (Computação) Investimentos - Processo decisório Empresas - Lucratividade |
title_short |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
title_full |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
title_fullStr |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
title_full_unstemmed |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
title_sort |
Aplicação de redes neurais na classificação de rentabilidade futura de empresas |
author |
Matsumoto, Élia Yathie |
author_facet |
Matsumoto, Élia Yathie |
author_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.member.none.fl_str_mv |
Rochman, Ricardo Ratner Pedreira, Carlos Eduardo |
dc.contributor.author.fl_str_mv |
Matsumoto, Élia Yathie |
dc.contributor.advisor1.fl_str_mv |
Pinto, Afonso de Campos |
contributor_str_mv |
Pinto, Afonso de Campos |
dc.subject.por.fl_str_mv |
Finanças Classificação de padrões (Computação) |
topic |
Finanças Classificação de padrões (Computação) Economia Redes neurais (Computação) Investimentos - Processo decisório Empresas - Lucratividade |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Redes neurais (Computação) Investimentos - Processo decisório Empresas - Lucratividade |
description |
The motivation of this work is to verify the efficiency of neural networks as a tool for classifying forecasts of companies’ return on equity, so that they can be used in order to provide support for the development of investment decision support systems. The results obtained by the proposed neural networks mode are compared to those obtained by the use of the classic multiple linear regression as a minimum reference and, as a benchmark, to those obtained via ordinal logistic multiple regression. In this work, we gathered top 1000 companies’ financial and accounting data, annually listed by Melhores e Maiores – Exame publication (Editora Abril), from 1996 to 2006. The three models were built using data relative to the period between 1996 and 2004. Using the 2005 data as input in order to forecast companies’ classification in 2006, the three models’ outputs were compared to the observed 2006 classification, and the neural network model yielded the best results. |
publishDate |
2008 |
dc.date.issued.fl_str_mv |
2008-11-26 |
dc.date.accessioned.fl_str_mv |
2010-04-20T21:00:14Z |
dc.date.available.fl_str_mv |
2010-04-20T21:00:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MATSUMOTO, Élia Yathie. Aplicação de redes neurais na classificação de rentabilidade futura de empresas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008. |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/2628 |
identifier_str_mv |
MATSUMOTO, Élia Yathie. Aplicação de redes neurais na classificação de rentabilidade futura de empresas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008. |
url |
http://hdl.handle.net/10438/2628 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/aacc84e1-e8aa-45b9-ac75-89de3d49f164/download https://repositorio.fgv.br/bitstreams/cce4852a-c24f-4389-93d7-5816246834bc/download https://repositorio.fgv.br/bitstreams/1d096b7e-4cef-4e53-a7a2-281f4927fbf5/download https://repositorio.fgv.br/bitstreams/99b56382-7928-4f86-97f9-0b8fbae3e8b3/download |
bitstream.checksum.fl_str_mv |
de33385de1e73a61258fd07f2c87ed4f 6070ec327d767c0d10895436190dca47 2268d20eab93b50c0616502c15d727ee 9153e47b5c207ec70471b7858e3f91c7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797730737192960 |