Aplicação de redes neurais na classificação de rentabilidade futura de empresas

Detalhes bibliográficos
Autor(a) principal: Matsumoto, Élia Yathie
Data de Publicação: 2008
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/2628
Resumo: The motivation of this work is to verify the efficiency of neural networks as a tool for classifying forecasts of companies’ return on equity, so that they can be used in order to provide support for the development of investment decision support systems. The results obtained by the proposed neural networks mode are compared to those obtained by the use of the classic multiple linear regression as a minimum reference and, as a benchmark, to those obtained via ordinal logistic multiple regression. In this work, we gathered top 1000 companies’ financial and accounting data, annually listed by Melhores e Maiores – Exame publication (Editora Abril), from 1996 to 2006. The three models were built using data relative to the period between 1996 and 2004. Using the 2005 data as input in order to forecast companies’ classification in 2006, the three models’ outputs were compared to the observed 2006 classification, and the neural network model yielded the best results.
id FGV_e1e00f1ea02292dabac8cc2df6889148
oai_identifier_str oai:repositorio.fgv.br:10438/2628
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Matsumoto, Élia YathieEscolas::EESPRochman, Ricardo RatnerPedreira, Carlos EduardoPinto, Afonso de Campos2010-04-20T21:00:14Z2010-04-20T21:00:14Z2008-11-26MATSUMOTO, Élia Yathie. Aplicação de redes neurais na classificação de rentabilidade futura de empresas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008.http://hdl.handle.net/10438/2628The motivation of this work is to verify the efficiency of neural networks as a tool for classifying forecasts of companies’ return on equity, so that they can be used in order to provide support for the development of investment decision support systems. The results obtained by the proposed neural networks mode are compared to those obtained by the use of the classic multiple linear regression as a minimum reference and, as a benchmark, to those obtained via ordinal logistic multiple regression. In this work, we gathered top 1000 companies’ financial and accounting data, annually listed by Melhores e Maiores – Exame publication (Editora Abril), from 1996 to 2006. The three models were built using data relative to the period between 1996 and 2004. Using the 2005 data as input in order to forecast companies’ classification in 2006, the three models’ outputs were compared to the observed 2006 classification, and the neural network model yielded the best results.Este trabalho tem por motivação evidenciar a eficiência de redes neurais na classificação de rentabilidade futura de empresas, e desta forma, prover suporte para o desenvolvimento de sistemas de apoio a tomada de decisão de investimentos. Para serem comparados com o modelo de redes neurais, foram escolhidos o modelo clássico de regressão linear múltipla, como referência mínima, e o de regressão logística ordenada, como marca comparativa de desempenho (benchmark). Neste texto, extraímos dados financeiros e contábeis das 1000 melhores empresas listadas, anualmente, entre 1996 e 2006, na publicação Melhores e Maiores – Exame (Editora Abril). Os três modelos foram construídos tendo como base as informações das empresas entre 1996 e 2005. Dadas as informações de 2005 para estimar a classificação das empresas em 2006, os resultados dos três modelos foram comparados com as classificações observadas em 2006, e o modelo de redes neurais gerou o melhor resultado.porFinançasClassificação de padrões (Computação)EconomiaRedes neurais (Computação)Investimentos - Processo decisórioEmpresas - LucratividadeAplicação de redes neurais na classificação de rentabilidade futura de empresasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTHUMBNAILElia Yathie Matsumoto.pdf.jpgElia Yathie Matsumoto.pdf.jpgGenerated Thumbnailimage/jpeg2361https://repositorio.fgv.br/bitstreams/aacc84e1-e8aa-45b9-ac75-89de3d49f164/downloadde33385de1e73a61258fd07f2c87ed4fMD57TEXTElia Yathie Matsumoto.pdf.txtElia Yathie Matsumoto.pdf.txtExtracted texttext/plain75597https://repositorio.fgv.br/bitstreams/cce4852a-c24f-4389-93d7-5816246834bc/download6070ec327d767c0d10895436190dca47MD56ORIGINALElia Yathie Matsumoto.pdfapplication/pdf484683https://repositorio.fgv.br/bitstreams/1d096b7e-4cef-4e53-a7a2-281f4927fbf5/download2268d20eab93b50c0616502c15d727eeMD53LICENSElicense.txttext/plain4886https://repositorio.fgv.br/bitstreams/99b56382-7928-4f86-97f9-0b8fbae3e8b3/download9153e47b5c207ec70471b7858e3f91c7MD5410438/26282023-11-27 11:38:24.038open.accessoai:repositorio.fgv.br:10438/2628https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-27T11:38:24Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseTGljZW5zZSBncmFudGVkIGJ5IEx1Y2lhbmEgR2FicmllbCAobHVjaWFuYS5nYWJyaWVsQGZndi5icikgb24gMjAwOS0wNS0xOFQxOTo0NDo0MFogKEdNVCk6Cg0KVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTw0KUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQ0KDQoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vDQpwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdQ0KZGlyZWl0b3MgY29uZXhvcyByZWZlcmVudGVzIMOgIHRvdGFsaWRhZGUgZGEgT2JyYSBvcmEgZGVwb3NpdGFkYSBlbQ0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvDQpkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpDQo5LjYwOS85OC4gTsOjbyBzZW5kbyBlc3RlIG8gY2Fzbywgdm9jw6ogYXNzZWd1cmEgdGVyIG9idGlkbywgZGlyZXRhbWVudGUNCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlDQpkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MNCmFmZXRhZG9zIHBlbGEgYXNzaW5hdHVyYSBkb3MgcHJlc2VudGVzIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvLCBkZQ0KbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZMOnw6NvIEdldHVsaW8gVmFyZ2FzIGUgc2V1cw0KZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbw0KbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYQ0KZW0gdmluY3VsYcOnw6NvIGEgcXVhaXNxdWVyIHNlcnZpw6dvcyBkZSBidXNjYSBlIGRpc3RyaWJ1acOnw6NvIGRlIGNvbnRlw7pkbw0KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MNCnBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLg0KDQoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQ0KdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMNCm91IHF1YWxxdWVyIG91dHJhIGNvbnRyYXByZXN0YcOnw6NvLCBwZWN1bmnDoXJpYSBvdSBuw6NvLCDDoCBGdW5kYcOnw6NvDQpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQ0KZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldQ0KcmVzdW1vL2Fic3RyYWN0LCBwb3IgbWVpb3MgZWxldHLDtG5pY29zLCBubyBzaXRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbA0KRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uDQoNCjMuIEEgcHJlc2VudGUgbGljZW7Dp2EgdGFtYsOpbSBhYnJhbmdlLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zDQpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwNCmVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgDQpyZXByZXNlbnRhw6fDo28gcMO6YmxpY2EgZS9vdSBleGVjdcOnw6NvIHDDumJsaWNhLCBiZW0gY29tbyBxdWFscXVlciBvdXRyYQ0KbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLA0Kbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlDQpmb3IgYXBsaWPDoXZlbCBhb3Mgc2VydmnDp29zIHByZXN0YWRvcyBhbyBww7pibGljbyBwZWxhIEJpYmxpb3RlY2ENClZpcnR1YWwgRkdWLg0KDQo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vDQppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQ0KZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZQ0KZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbQ0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4NCg0KNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvcg0KaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqg0Kb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtDQppbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlDQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgDQpwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4NCg0KNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhDQpDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUNCkRvY3VtZW50YXRpb24gTGljZW5zZSAocXVhbHF1ZXIgdmVyc8OjbyksIG91IG91dHJhIGxpY2Vuw6dhIHF1YWxpZmljYWRhDQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MNCihkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlDQpEZWZpbml0aW9uIChkaXNwb27DrXZlbCBlbTogaHR0cDovL3d3dy5nbnUub3JnL3BoaWxvc29waHkvZnJlZS1zdy5odG1sKSwgDQpvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQ0KY29udGXDumRvIGxlZ8OtdmVsIHBvciBzZXJlcyBodW1hbm9zIGUsIHNlIHBvc3PDrXZlbCwgdGFtYsOpbSBlbSBtZXRhZGFkb3MNCmxlZ8OtdmVpcyBwb3IgbcOhcXVpbmEuIEEgaW5kaWNhw6fDo28gZGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBkZXZlIHNlcg0KYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWENCmludGVncmFsLg0KDQoNCkFvIGNvbmNsdWlyIGEgcHJlc2VudGUgZXRhcGEgZSBhcyBldGFwYXMgc3Vic2Vxw7xlbnRlcyBkbyBwcm9jZXNzbyBkZQ0Kc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlDQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcw0Kc2VtIGZhemVyIHF1YWxxdWVyIHJlc2VydmEgZSBub3ZhbWVudGUgY29uZmlybWFuZG8gcXVlIGN1bXByZSBvcw0KcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4NCg0KSGF2ZW5kbyBxdWFscXVlciBkaXNjb3Jkw6JuY2lhIGVtIHJlbGHDp8OjbyBhb3MgcHJlc2VudGVzIHRlcm1vcyBvdSBuw6NvDQpzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlcg0KaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvDQplcXVpdmFsZSDDoCBhc3NpbmF0dXJhIGRlc3RlIGRvY3VtZW50bywgY29tIHRvZGFzIGFzIGNvbnNlccO8w6puY2lhcyBuZWxlDQpwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvDQpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcw0KYXBsaWPDoXZlaXMgw6AgT2JyYSBkZXBvc2l0YWRhIGR1cmFudGUgZXN0ZSBwcm9jZXNzbywgb3UgY2FzbyBuw6NvIHRlbmhhDQpvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUNCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLg0KDQoNClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUNCm8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgZW50cmUgZW0gY29udGF0byBjb20gW25jZXBnZUBmZ3YuYnJdDQo=
dc.title.por.fl_str_mv Aplicação de redes neurais na classificação de rentabilidade futura de empresas
title Aplicação de redes neurais na classificação de rentabilidade futura de empresas
spellingShingle Aplicação de redes neurais na classificação de rentabilidade futura de empresas
Matsumoto, Élia Yathie
Finanças
Classificação de padrões (Computação)
Economia
Redes neurais (Computação)
Investimentos - Processo decisório
Empresas - Lucratividade
title_short Aplicação de redes neurais na classificação de rentabilidade futura de empresas
title_full Aplicação de redes neurais na classificação de rentabilidade futura de empresas
title_fullStr Aplicação de redes neurais na classificação de rentabilidade futura de empresas
title_full_unstemmed Aplicação de redes neurais na classificação de rentabilidade futura de empresas
title_sort Aplicação de redes neurais na classificação de rentabilidade futura de empresas
author Matsumoto, Élia Yathie
author_facet Matsumoto, Élia Yathie
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.member.none.fl_str_mv Rochman, Ricardo Ratner
Pedreira, Carlos Eduardo
dc.contributor.author.fl_str_mv Matsumoto, Élia Yathie
dc.contributor.advisor1.fl_str_mv Pinto, Afonso de Campos
contributor_str_mv Pinto, Afonso de Campos
dc.subject.por.fl_str_mv Finanças
Classificação de padrões (Computação)
topic Finanças
Classificação de padrões (Computação)
Economia
Redes neurais (Computação)
Investimentos - Processo decisório
Empresas - Lucratividade
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Redes neurais (Computação)
Investimentos - Processo decisório
Empresas - Lucratividade
description The motivation of this work is to verify the efficiency of neural networks as a tool for classifying forecasts of companies’ return on equity, so that they can be used in order to provide support for the development of investment decision support systems. The results obtained by the proposed neural networks mode are compared to those obtained by the use of the classic multiple linear regression as a minimum reference and, as a benchmark, to those obtained via ordinal logistic multiple regression. In this work, we gathered top 1000 companies’ financial and accounting data, annually listed by Melhores e Maiores – Exame publication (Editora Abril), from 1996 to 2006. The three models were built using data relative to the period between 1996 and 2004. Using the 2005 data as input in order to forecast companies’ classification in 2006, the three models’ outputs were compared to the observed 2006 classification, and the neural network model yielded the best results.
publishDate 2008
dc.date.issued.fl_str_mv 2008-11-26
dc.date.accessioned.fl_str_mv 2010-04-20T21:00:14Z
dc.date.available.fl_str_mv 2010-04-20T21:00:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MATSUMOTO, Élia Yathie. Aplicação de redes neurais na classificação de rentabilidade futura de empresas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008.
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/2628
identifier_str_mv MATSUMOTO, Élia Yathie. Aplicação de redes neurais na classificação de rentabilidade futura de empresas. Dissertação (Mestrado Profissional em Finanças e Economia) - FGV - Fundação Getúlio Vargas, São Paulo, 2008.
url http://hdl.handle.net/10438/2628
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/aacc84e1-e8aa-45b9-ac75-89de3d49f164/download
https://repositorio.fgv.br/bitstreams/cce4852a-c24f-4389-93d7-5816246834bc/download
https://repositorio.fgv.br/bitstreams/1d096b7e-4cef-4e53-a7a2-281f4927fbf5/download
https://repositorio.fgv.br/bitstreams/99b56382-7928-4f86-97f9-0b8fbae3e8b3/download
bitstream.checksum.fl_str_mv de33385de1e73a61258fd07f2c87ed4f
6070ec327d767c0d10895436190dca47
2268d20eab93b50c0616502c15d727ee
9153e47b5c207ec70471b7858e3f91c7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797730737192960