Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/7813 |
Resumo: | We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting. |
id |
FGV_e7ef52bf89798102bceee55170fa9401 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/7813 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Athanasopoulos, GeorgeGuillen, Osmani Teixeira CarvalhoIssler, João VictorVahid, FarshidEscolas::EPGEFGV2011-01-27T13:35:17Z2011-01-27T13:35:17Z2011-01-270104-8910http://hdl.handle.net/10438/7813We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting.engFundação Getulio Vargas. Escola de Pós-graduação em EconomiaEnsaios Econômicos;713Reduced rank modelsModel selection criteriaForecasting accuracyEconomiaAnálise de regressãoModelos macroeconômicosPrevisão econômicaMonte Carlo, Método deMétodos de simulaçãoEconomiaModel selection, estimation and forecasting in VAR models with short-run and long-run restrictionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-84712https://repositorio.fgv.br/bitstreams/16ef4086-b92e-4e94-b744-408e29e43f80/download4dea6f7333914d9740702a2deb2db217MD52ORIGINALJoE_AGIV_Final_with_Acknowledgement.pdfJoE_AGIV_Final_with_Acknowledgement.pdfapplication/pdf526227https://repositorio.fgv.br/bitstreams/3d0b80d9-33bf-4f07-ad8d-84873364de07/downloadea96780110761827c536d3af92ac165aMD53TEXTJoE_AGIV_Final_with_Acknowledgement.pdf.txtJoE_AGIV_Final_with_Acknowledgement.pdf.txtExtracted texttext/plain97333https://repositorio.fgv.br/bitstreams/fd687951-236e-4f1b-9de2-5dd291689e8c/download1a141d2a7e6233048be8572ef75fc621MD58THUMBNAILJoE_AGIV_Final_with_Acknowledgement.pdf.jpgJoE_AGIV_Final_with_Acknowledgement.pdf.jpgGenerated Thumbnailimage/jpeg4136https://repositorio.fgv.br/bitstreams/4fb968c3-11ff-4d30-989e-2293fe65ac2d/downloadae7bf702d33fbd31467a75a365b86267MD5910438/78132023-11-09 23:11:02.575open.accessoai:repositorio.fgv.br:10438/7813https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-09T23:11:02Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZMOnw6NvIEdldHVsaW8gVmFyZ2FzIGUgc2V1cwpmdW5jaW9uw6FyaW9zIGRlIHF1YWxxdWVyIHJlc3BvbnNhYmlsaWRhZGUgcGVsbyB1c28gbsOjby1hdXRvcml6YWRvIGRvCm1hdGVyaWFsIGRlcG9zaXRhZG8sIHNlamEgZW0gdmluY3VsYcOnw6NvIMOgIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIHNlamEKZW0gdmluY3VsYcOnw6NvIGEgcXVhaXNxdWVyIHNlcnZpw6dvcyBkZSBidXNjYSBlIGRpc3RyaWJ1acOnw6NvIGRlIGNvbnRlw7pkbwpxdWUgZmHDp2FtIHVzbyBkYXMgaW50ZXJmYWNlcyBlIGVzcGHDp28gZGUgYXJtYXplbmFtZW50byBwcm92aWRlbmNpYWRvcwpwZWxhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgcG9yIG1laW8gZGUgc2V1cyBzaXN0ZW1hcyBpbmZvcm1hdGl6YWRvcy4KCjIuIEEgYXNzaW5hdHVyYSBkZXN0YSBsaWNlbsOnYSB0ZW0gY29tbyBjb25zZXHDvMOqbmNpYSBhIHRyYW5zZmVyw6puY2lhLCBhCnTDrXR1bG8gbsOjby1leGNsdXNpdm8gZSBuw6NvLW9uZXJvc28sIGlzZW50YSBkbyBwYWdhbWVudG8gZGUgcm95YWx0aWVzCm91IHF1YWxxdWVyIG91dHJhIGNvbnRyYXByZXN0YcOnw6NvLCBwZWN1bmnDoXJpYSBvdSBuw6NvLCDDoCBGdW5kYcOnw6NvCkdldHVsaW8gVmFyZ2FzLCBkb3MgZGlyZWl0b3MgZGUgYXJtYXplbmFyIGRpZ2l0YWxtZW50ZSwgcmVwcm9kdXppciBlCmRpc3RyaWJ1aXIgbmFjaW9uYWwgZSBpbnRlcm5hY2lvbmFsbWVudGUgYSBPYnJhLCBpbmNsdWluZG8tc2UgbyBzZXUKcmVzdW1vL2Fic3RyYWN0LCBwb3IgbWVpb3MgZWxldHLDtG5pY29zLCBubyBzaXRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbApGR1YsIGFvIHDDumJsaWNvIGVtIGdlcmFsLCBlbSByZWdpbWUgZGUgYWNlc3NvIGFiZXJ0by4KCjMuIEEgcHJlc2VudGUgbGljZW7Dp2EgdGFtYsOpbSBhYnJhbmdlLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zCm5vIGl0ZW0gMiwgc3VwcmEsIHF1YWxxdWVyIGRpcmVpdG8gZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBjYWLDrXZlbAplbSByZWxhw6fDo28gw6AgT2JyYSBvcmEgZGVwb3NpdGFkYSwgaW5jbHVpbmRvLXNlIG9zIHVzb3MgcmVmZXJlbnRlcyDDoApyZXByZXNlbnRhw6fDo28gcMO6YmxpY2EgZS9vdSBleGVjdcOnw6NvIHDDumJsaWNhLCBiZW0gY29tbyBxdWFscXVlciBvdXRyYQptb2RhbGlkYWRlIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gcXVlIGV4aXN0YSBvdSB2ZW5oYSBhIGV4aXN0aXIsCm5vcyB0ZXJtb3MgZG8gYXJ0aWdvIDY4IGUgc2VndWludGVzIGRhIExlaSA5LjYxMC85OCwgbmEgZXh0ZW5zw6NvIHF1ZQpmb3IgYXBsaWPDoXZlbCBhb3Mgc2VydmnDp29zIHByZXN0YWRvcyBhbyBww7pibGljbyBwZWxhIEJpYmxpb3RlY2EKVmlydHVhbCBGR1YuCgo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vCml0ZW0gMiwgc3VwcmEsIHRvZG9zIG9zIGRpcmVpdG9zIGNvbmV4b3MgZGUgYXJ0aXN0YXMgaW50w6lycHJldGVzIG91CmV4ZWN1dGFudGVzLCBwcm9kdXRvcmVzIGZvbm9ncsOhZmljb3Mgb3UgZW1wcmVzYXMgZGUgcmFkaW9kaWZ1c8OjbyBxdWUKZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbQpjb25mb3JtaWRhZGUgY29tIG8gcmVnaW1lIGZpeGFkbyBubyBUw610dWxvIFYgZGEgTGVpIDkuNjEwLzk4LgoKNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvcgppbnN0aXR1acOnw7VlcyBkZSBmb21lbnRvIMOgIHBlc3F1aXNhIG91IHF1YWxxdWVyIG91dHJhIHNlbWVsaGFudGUsIHZvY8OqCm91IG8gdGl0dWxhciBhc3NlZ3VyYSBxdWUgY3VtcHJpdSB0b2RhcyBhcyBvYnJpZ2HDp8O1ZXMgcXVlIGxoZSBmb3JhbQppbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlCnF1ZSBuw6NvIGVzdMOhIGNvbnRyYXJpYW5kbyBxdWFscXVlciBkaXNwb3Npw6fDo28gY29udHJhdHVhbCByZWZlcmVudGUgw6AKcHVibGljYcOnw6NvIGRvIGNvbnRlw7pkbyBvcmEgc3VibWV0aWRvIMOgIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YuCgo2LiBDYXNvIGEgT2JyYSBvcmEgZGVwb3NpdGFkYSBlbmNvbnRyZS1zZSBsaWNlbmNpYWRhIHNvYiB1bWEgbGljZW7Dp2EKQ3JlYXRpdmUgQ29tbW9ucyAocXVhbHF1ZXIgdmVyc8OjbyksIHNvYiBhIGxpY2Vuw6dhIEdOVSBGcmVlCkRvY3VtZW50YXRpb24gTGljZW5zZSAocXVhbHF1ZXIgdmVyc8OjbyksIG91IG91dHJhIGxpY2Vuw6dhIHF1YWxpZmljYWRhCmNvbW8gbGl2cmUgc2VndW5kbyBvcyBjcml0w6lyaW9zIGRhIERlZmluaXRpb24gb2YgRnJlZSBDdWx0dXJhbCBXb3JrcwooZGlzcG9uw612ZWwgZW06IGh0dHA6Ly9mcmVlZG9tZGVmaW5lZC5vcmcvRGVmaW5pdGlvbikgb3UgRnJlZSBTb2Z0d2FyZQpEZWZpbml0aW9uIChkaXNwb27DrXZlbCBlbTogaHR0cDovL3d3dy5nbnUub3JnL3BoaWxvc29waHkvZnJlZS1zdy5odG1sKSwgCm8gYXJxdWl2byByZWZlcmVudGUgw6AgT2JyYSBkZXZlIGluZGljYXIgYSBsaWNlbsOnYSBhcGxpY8OhdmVsIGVtCmNvbnRlw7pkbyBsZWfDrXZlbCBwb3Igc2VyZXMgaHVtYW5vcyBlLCBzZSBwb3Nzw612ZWwsIHRhbWLDqW0gZW0gbWV0YWRhZG9zCmxlZ8OtdmVpcyBwb3IgbcOhcXVpbmEuIEEgaW5kaWNhw6fDo28gZGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBkZXZlIHNlcgphY29tcGFuaGFkYSBkZSB1bSBsaW5rIHBhcmEgb3MgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8gb3Ugc3VhIGPDs3BpYQppbnRlZ3JhbC4KCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUKc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlCmNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zCnNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MKcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbwpzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlcgppbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28KZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZQpwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvCm7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zCmFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYQpvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUKdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgoKUGFyYSBhIHNvbHXDp8OjbyBkZSBxdWFscXVlciBkw7p2aWRhIHF1YW50byBhb3MgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8gZQpvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28sIGVudHJlIGVtIGNvbnRhdG8gY29tIFtuY2VwZ2VAZmd2LmJyXQo= |
dc.title.eng.fl_str_mv |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
title |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
spellingShingle |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions Athanasopoulos, George Reduced rank models Model selection criteria Forecasting accuracy Economia Análise de regressão Modelos macroeconômicos Previsão econômica Monte Carlo, Método de Métodos de simulação Economia |
title_short |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
title_full |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
title_fullStr |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
title_full_unstemmed |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
title_sort |
Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions |
author |
Athanasopoulos, George |
author_facet |
Athanasopoulos, George Guillen, Osmani Teixeira Carvalho Issler, João Victor Vahid, Farshid |
author_role |
author |
author2 |
Guillen, Osmani Teixeira Carvalho Issler, João Victor Vahid, Farshid |
author2_role |
author author author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EPGE |
dc.contributor.affiliation.none.fl_str_mv |
FGV |
dc.contributor.author.fl_str_mv |
Athanasopoulos, George Guillen, Osmani Teixeira Carvalho Issler, João Victor Vahid, Farshid |
dc.subject.eng.fl_str_mv |
Reduced rank models Model selection criteria Forecasting accuracy |
topic |
Reduced rank models Model selection criteria Forecasting accuracy Economia Análise de regressão Modelos macroeconômicos Previsão econômica Monte Carlo, Método de Métodos de simulação Economia |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Análise de regressão Modelos macroeconômicos Previsão econômica Monte Carlo, Método de Métodos de simulação Economia |
description |
We study the joint determination of the lag length, the dimension of the cointegrating space and the rank of the matrix of short-run parameters of a vector autoregressive (VAR) model using model selection criteria. We suggest a new two-step model selection procedure which is a hybrid of traditional criteria and criteria with data-dependant penalties and we prove its consistency. A Monte Carlo study explores the finite sample performance of this procedure and evaluates the forecasting accuracy of models selected by this procedure. Two empirical applications confirm the usefulness of the model selection procedure proposed here for forecasting. |
publishDate |
2011 |
dc.date.accessioned.fl_str_mv |
2011-01-27T13:35:17Z |
dc.date.available.fl_str_mv |
2011-01-27T13:35:17Z |
dc.date.issued.fl_str_mv |
2011-01-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/7813 |
dc.identifier.issn.none.fl_str_mv |
0104-8910 |
identifier_str_mv |
0104-8910 |
url |
http://hdl.handle.net/10438/7813 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
Ensaios Econômicos;713 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
publisher.none.fl_str_mv |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/16ef4086-b92e-4e94-b744-408e29e43f80/download https://repositorio.fgv.br/bitstreams/3d0b80d9-33bf-4f07-ad8d-84873364de07/download https://repositorio.fgv.br/bitstreams/fd687951-236e-4f1b-9de2-5dd291689e8c/download https://repositorio.fgv.br/bitstreams/4fb968c3-11ff-4d30-989e-2293fe65ac2d/download |
bitstream.checksum.fl_str_mv |
4dea6f7333914d9740702a2deb2db217 ea96780110761827c536d3af92ac165a 1a141d2a7e6233048be8572ef75fc621 ae7bf702d33fbd31467a75a365b86267 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797713581441024 |