Understanding the critical distance in sparse distributed memory

Detalhes bibliográficos
Autor(a) principal: Brogliato, Marcelo Salhab
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/13095
Resumo: Modelos de tomada de decisão necessitam refletir os aspectos da psi- cologia humana. Com este objetivo, este trabalho é baseado na Sparse Distributed Memory (SDM), um modelo psicologicamente e neuro- cientificamente plausível da memória humana, publicado por Pentti Kanerva, em 1988. O modelo de Kanerva possui um ponto crítico: um item de memória aquém deste ponto é rapidamente encontrado, e items além do ponto crítico não o são. Kanerva calculou este ponto para um caso especial com um seleto conjunto de parâmetros (fixos). Neste trabalho estendemos o conhecimento deste ponto crítico, através de simulações computacionais, e analisamos o comportamento desta 'Critical Distance' sob diferentes cenários: em diferentes dimensões; em diferentes números de items armazenados na memória; e em diferentes números de armazenamento do item. Também é derivada uma função que, quando minimizada, determina o valor da 'Critical Distance' de acordo com o estado da memória. Um objetivo secundário do trabalho é apresentar a SDM de forma simples e intuitiva para que pesquisadores de outras áreas possam imaginar como ela pode ajudá-los a entender e a resolver seus problemas.
id FGV_ea6bdee83ba5991ce985104970bcaca7
oai_identifier_str oai:repositorio.fgv.br:10438/13095
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Brogliato, Marcelo SalhabEscolas::EBAPEGoldszmidt, Rafael Guilherme BursteinCoelho, Flávio CodeçoOliveira, Paulo Murilo Castro deLinhares, Alexandre2015-01-12T12:16:51Z2015-01-12T12:16:51Z2012-02-02BROGLIATO, Marcelo Salhab. Understanding the critical distance in sparse distributed memory. Dissertação (Mestrado em Administração) - Escola Brasileira de Administração Pública e de Empresas, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2012.https://hdl.handle.net/10438/13095Modelos de tomada de decisão necessitam refletir os aspectos da psi- cologia humana. Com este objetivo, este trabalho é baseado na Sparse Distributed Memory (SDM), um modelo psicologicamente e neuro- cientificamente plausível da memória humana, publicado por Pentti Kanerva, em 1988. O modelo de Kanerva possui um ponto crítico: um item de memória aquém deste ponto é rapidamente encontrado, e items além do ponto crítico não o são. Kanerva calculou este ponto para um caso especial com um seleto conjunto de parâmetros (fixos). Neste trabalho estendemos o conhecimento deste ponto crítico, através de simulações computacionais, e analisamos o comportamento desta 'Critical Distance' sob diferentes cenários: em diferentes dimensões; em diferentes números de items armazenados na memória; e em diferentes números de armazenamento do item. Também é derivada uma função que, quando minimizada, determina o valor da 'Critical Distance' de acordo com o estado da memória. Um objetivo secundário do trabalho é apresentar a SDM de forma simples e intuitiva para que pesquisadores de outras áreas possam imaginar como ela pode ajudá-los a entender e a resolver seus problemas.Models of decision-making need to reflect human psychology. Towards this end, this work is based on Sparse Distributed Memory (SDM), a psychologically and neuroscientifically plausible model of human memory, published by Pentti Kanerva in 1988. Kanerva‘s model of memory holds a critical point: prior to this point, a previously stored item can be easily retrieved; but beyond this point an item cannot be retrieved. Kanerva has methodically calculated this point for a particu- lar set of (fixed) parameters. Here we extend this knowledge, through computational simulations, in which we analyzed this critical point behavior under several scenarios: in several dimensions, in number of stored items in memory, and in number of times the item has been rehearsed. We also derive a function that, when minimized, determines the value of critical distance according to the state of the memory. A secondary goal is to present the SDM in a simple and intuitive way in order that researchers of other areas can think how SDM can help them to understand and solve their problems.engUnderstanding the critical distance in sparse distributed memoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAdministração de empresasMemória - Simulação por computadorComputadores neuraisInteligência artificial distribuídainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVORIGINALFullThesis-v6 -biblioteca-digital.pdfFullThesis-v6 -biblioteca-digital.pdfPDFapplication/pdf64255589https://repositorio.fgv.br/bitstreams/061fbd82-ffcc-475a-b04e-29cc6bd4ae8f/download0ca16d02e6d615b8fc4c6f4f46db2c22MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/b0a02fb4-aba4-434f-9d2e-eab491c65817/downloaddfb340242cced38a6cca06c627998fa1MD52TEXT!FullThesis-v6 -biblioteca-digital.pdf.txt!FullThesis-v6 -biblioteca-digital.pdf.txtExtracted Texttext/plain107858https://repositorio.fgv.br/bitstreams/021581b2-0187-45c7-a1a8-75621fd16144/download7defc0ed2187187e9c1ee6c51baaf207MD53FullThesis-v6 -biblioteca-digital.pdf.txtFullThesis-v6 -biblioteca-digital.pdf.txtExtracted texttext/plain107687https://repositorio.fgv.br/bitstreams/804780a2-43e5-42fb-87b3-4b9222429764/downloaddc687e6361f45cf97242c15151fe28d9MD55THUMBNAIL!FullThesis-v6 -biblioteca-digital.pdf.jpg!FullThesis-v6 -biblioteca-digital.pdf.jpgGenerated Thumbnailimage/jpeg1201https://repositorio.fgv.br/bitstreams/ee8fd9b4-86f8-40b4-8c10-f58f263807b5/downloada10a8a5c2a4f4553ee309b2d34acd68cMD54FullThesis-v6 -biblioteca-digital.pdf.jpgFullThesis-v6 -biblioteca-digital.pdf.jpgGenerated Thumbnailimage/jpeg1181https://repositorio.fgv.br/bitstreams/7850ee32-cca8-433f-8cde-a8f65dd88fe4/downloadda6cc8c91117cbc260f3d5d9a99c1c5dMD5610438/130952024-10-02 13:13:16.318open.accessoai:repositorio.fgv.br:10438/13095https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742024-10-02T13:13:16Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Understanding the critical distance in sparse distributed memory
title Understanding the critical distance in sparse distributed memory
spellingShingle Understanding the critical distance in sparse distributed memory
Brogliato, Marcelo Salhab
Administração de empresas
Memória - Simulação por computador
Computadores neurais
Inteligência artificial distribuída
title_short Understanding the critical distance in sparse distributed memory
title_full Understanding the critical distance in sparse distributed memory
title_fullStr Understanding the critical distance in sparse distributed memory
title_full_unstemmed Understanding the critical distance in sparse distributed memory
title_sort Understanding the critical distance in sparse distributed memory
author Brogliato, Marcelo Salhab
author_facet Brogliato, Marcelo Salhab
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EBAPE
dc.contributor.member.none.fl_str_mv Goldszmidt, Rafael Guilherme Burstein
Coelho, Flávio Codeço
Oliveira, Paulo Murilo Castro de
dc.contributor.author.fl_str_mv Brogliato, Marcelo Salhab
dc.contributor.advisor1.fl_str_mv Linhares, Alexandre
contributor_str_mv Linhares, Alexandre
dc.subject.area.por.fl_str_mv Administração de empresas
topic Administração de empresas
Memória - Simulação por computador
Computadores neurais
Inteligência artificial distribuída
dc.subject.bibliodata.por.fl_str_mv Memória - Simulação por computador
Computadores neurais
Inteligência artificial distribuída
description Modelos de tomada de decisão necessitam refletir os aspectos da psi- cologia humana. Com este objetivo, este trabalho é baseado na Sparse Distributed Memory (SDM), um modelo psicologicamente e neuro- cientificamente plausível da memória humana, publicado por Pentti Kanerva, em 1988. O modelo de Kanerva possui um ponto crítico: um item de memória aquém deste ponto é rapidamente encontrado, e items além do ponto crítico não o são. Kanerva calculou este ponto para um caso especial com um seleto conjunto de parâmetros (fixos). Neste trabalho estendemos o conhecimento deste ponto crítico, através de simulações computacionais, e analisamos o comportamento desta 'Critical Distance' sob diferentes cenários: em diferentes dimensões; em diferentes números de items armazenados na memória; e em diferentes números de armazenamento do item. Também é derivada uma função que, quando minimizada, determina o valor da 'Critical Distance' de acordo com o estado da memória. Um objetivo secundário do trabalho é apresentar a SDM de forma simples e intuitiva para que pesquisadores de outras áreas possam imaginar como ela pode ajudá-los a entender e a resolver seus problemas.
publishDate 2012
dc.date.issued.fl_str_mv 2012-02-02
dc.date.accessioned.fl_str_mv 2015-01-12T12:16:51Z
dc.date.available.fl_str_mv 2015-01-12T12:16:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BROGLIATO, Marcelo Salhab. Understanding the critical distance in sparse distributed memory. Dissertação (Mestrado em Administração) - Escola Brasileira de Administração Pública e de Empresas, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2012.
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/13095
identifier_str_mv BROGLIATO, Marcelo Salhab. Understanding the critical distance in sparse distributed memory. Dissertação (Mestrado em Administração) - Escola Brasileira de Administração Pública e de Empresas, Fundação Getúlio Vargas - FGV, Rio de Janeiro, 2012.
url https://hdl.handle.net/10438/13095
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/061fbd82-ffcc-475a-b04e-29cc6bd4ae8f/download
https://repositorio.fgv.br/bitstreams/b0a02fb4-aba4-434f-9d2e-eab491c65817/download
https://repositorio.fgv.br/bitstreams/021581b2-0187-45c7-a1a8-75621fd16144/download
https://repositorio.fgv.br/bitstreams/804780a2-43e5-42fb-87b3-4b9222429764/download
https://repositorio.fgv.br/bitstreams/ee8fd9b4-86f8-40b4-8c10-f58f263807b5/download
https://repositorio.fgv.br/bitstreams/7850ee32-cca8-433f-8cde-a8f65dd88fe4/download
bitstream.checksum.fl_str_mv 0ca16d02e6d615b8fc4c6f4f46db2c22
dfb340242cced38a6cca06c627998fa1
7defc0ed2187187e9c1ee6c51baaf207
dc687e6361f45cf97242c15151fe28d9
a10a8a5c2a4f4553ee309b2d34acd68c
da6cc8c91117cbc260f3d5d9a99c1c5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797741681180672