Revisiting the synthetic control estimator

Detalhes bibliográficos
Autor(a) principal: Ferman, Bruno
Data de Publicação: 2016
Outros Autores: Pinto, Cristine Campos de Xavier
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: https://hdl.handle.net/10438/16614
Resumo: VERSÃO ATUALIZADA DE ABRIL DE 2018 DISPONÍVEL.
id FGV_f926652b7d9fbb892737b51c523c06a8
oai_identifier_str oai:repositorio.fgv.br:10438/16614
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Ferman, BrunoPinto, Cristine Campos de XavierEscolas::EESP2016-06-16T17:45:14Z2019-07-31T18:22:57Z2016-06-16T17:45:14Z2019-07-31T18:22:57Z2016-06-16421https://hdl.handle.net/10438/16614VERSÃO ATUALIZADA DE ABRIL DE 2018 DISPONÍVEL.The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The idea of the SC method is to use the pre-treatment periods to estimate weights such that a weighted average of the control units reconstructs the pre-treatment outcomes of the treated unit, and then use these weights to construct a counterfactual for the treated unit. \cite{Abadie2010} show that, if the pre-treatment match is close to perfect, then the bias of the SC estimator is bounded by a term that goes to zero with the number of pre-treatment periods ($T_0$). In this paper, we revisit the SC method in a linear factor model setting and consider the asymptotic properties of the SC estimator when $T_0$ goes to infinity. Differently from \cite{Abadie2010}, we do not condition the analysis on a close-to-perfect pre-treatment match, as the probability that this happens goes to zero when $T_0$ is large. We show that, in our setting, the SC estimator is asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. If errors are stationary, then the asymptotic bias of the SC estimator goes to zero when the transitory shocks are small, which is also the case in which it is more likely that the pre-treatment match will be good for a given $T_0$. Still, we show that the SC method can substantially improve over the difference-in-differences (DID) estimator even when a close-to-perfect fit is not achieved. However, in this case the method would rely on stronger identification assumptions. If a subset of the common factors is non-stationary, then we show that the SC weights might not reconstruct the factor loadings related to stationary common factors, even conditional on a close-to-perfect fit. While this is a scenario where the SC method significantly improves relative to DID, an important qualification is that the identification assumption in this case relies on orthogonality between treatment assignment and the stationary common factors. Finally, we suggest a modification in the permutation test proposed by \cite{Abadie2010} that has good asymptotic properties if the SC estimator is unbiased.engEESP - Textos para Discussão;TD 421Synthetic controlDiference-in-diferencesLinear factor modelEconomiaEconomiaModelos econométricosRevisiting the synthetic control estimatorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessFGV EESP - Textos para Discussão / Working Paper SeriesORIGINALTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdfTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdfapplication/pdf1128923https://repositorio.fgv.br/bitstreams/58bfea98-9afd-43a4-948f-cb1824dc8072/downloadcd7dda368ecef312c5804831503dd0b1MD512018-04.pdf2018-04.pdfapplication/pdf956867https://repositorio.fgv.br/bitstreams/6ede630d-81af-459f-bdae-d10401378eab/download55514f0f0d1fd4641c72fc49088cef19MD56THUMBNAILthumb_dc.jpgthumb_dc.jpgimage/jpeg3964https://repositorio.fgv.br/bitstreams/92c93574-4b8f-442e-8098-a384103d0d76/download1d5aa38d1e7f8a1de87cab24d1842ff8MD52TD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.jpgTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.jpgGenerated Thumbnailimage/jpeg6283https://repositorio.fgv.br/bitstreams/c20aa265-3a4a-467c-8f20-f39ae42e2d2d/download60129d4d16986be2ab50a6d84b6919a1MD5142018-04.pdf.jpg2018-04.pdf.jpgGenerated Thumbnailimage/jpeg3801https://repositorio.fgv.br/bitstreams/edf346d2-72fd-48a6-92f7-076144c573b1/download9b83f8429d800d1350f2d8c10bd23f56MD516LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/15032b27-2190-49f9-9ce5-b088f71b9860/downloaddfb340242cced38a6cca06c627998fa1MD53TEXTTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.txtTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.txtExtracted texttext/plain103981https://repositorio.fgv.br/bitstreams/674944ec-68b0-425e-9d58-9fb5728ff4e2/download63d8c402854c8662205b0488485e3d2cMD5132018-04.pdf.txt2018-04.pdf.txtExtracted texttext/plain102451https://repositorio.fgv.br/bitstreams/0687c57c-b560-4b4a-972d-26b1fd42aa06/downloadb5e561f336fa4f7b9dce838d2729b513MD51510438/166142023-11-03 23:36:05.71open.accessoai:repositorio.fgv.br:10438/16614https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-03T23:36:05Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.eng.fl_str_mv Revisiting the synthetic control estimator
title Revisiting the synthetic control estimator
spellingShingle Revisiting the synthetic control estimator
Ferman, Bruno
Synthetic control
Diference-in-diferences
Linear factor model
Economia
Economia
Modelos econométricos
title_short Revisiting the synthetic control estimator
title_full Revisiting the synthetic control estimator
title_fullStr Revisiting the synthetic control estimator
title_full_unstemmed Revisiting the synthetic control estimator
title_sort Revisiting the synthetic control estimator
author Ferman, Bruno
author_facet Ferman, Bruno
Pinto, Cristine Campos de Xavier
author_role author
author2 Pinto, Cristine Campos de Xavier
author2_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::EESP
dc.contributor.author.fl_str_mv Ferman, Bruno
Pinto, Cristine Campos de Xavier
dc.subject.eng.fl_str_mv Synthetic control
topic Synthetic control
Diference-in-diferences
Linear factor model
Economia
Economia
Modelos econométricos
dc.subject.por.fl_str_mv Diference-in-diferences
Linear factor model
dc.subject.area.por.fl_str_mv Economia
dc.subject.bibliodata.por.fl_str_mv Economia
Modelos econométricos
description VERSÃO ATUALIZADA DE ABRIL DE 2018 DISPONÍVEL.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-06-16T17:45:14Z
2019-07-31T18:22:57Z
dc.date.available.fl_str_mv 2016-06-16T17:45:14Z
2019-07-31T18:22:57Z
dc.date.issued.fl_str_mv 2016-06-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10438/16614
dc.identifier.sici.none.fl_str_mv 421
identifier_str_mv 421
url https://hdl.handle.net/10438/16614
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.por.fl_str_mv EESP - Textos para Discussão;TD 421
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/58bfea98-9afd-43a4-948f-cb1824dc8072/download
https://repositorio.fgv.br/bitstreams/6ede630d-81af-459f-bdae-d10401378eab/download
https://repositorio.fgv.br/bitstreams/92c93574-4b8f-442e-8098-a384103d0d76/download
https://repositorio.fgv.br/bitstreams/c20aa265-3a4a-467c-8f20-f39ae42e2d2d/download
https://repositorio.fgv.br/bitstreams/edf346d2-72fd-48a6-92f7-076144c573b1/download
https://repositorio.fgv.br/bitstreams/15032b27-2190-49f9-9ce5-b088f71b9860/download
https://repositorio.fgv.br/bitstreams/674944ec-68b0-425e-9d58-9fb5728ff4e2/download
https://repositorio.fgv.br/bitstreams/0687c57c-b560-4b4a-972d-26b1fd42aa06/download
bitstream.checksum.fl_str_mv cd7dda368ecef312c5804831503dd0b1
55514f0f0d1fd4641c72fc49088cef19
1d5aa38d1e7f8a1de87cab24d1842ff8
60129d4d16986be2ab50a6d84b6919a1
9b83f8429d800d1350f2d8c10bd23f56
dfb340242cced38a6cca06c627998fa1
63d8c402854c8662205b0488485e3d2c
b5e561f336fa4f7b9dce838d2729b513
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1813797869228916736