Revisiting the synthetic control estimator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | https://hdl.handle.net/10438/16614 |
Resumo: | VERSÃO ATUALIZADA DE ABRIL DE 2018 DISPONÍVEL. |
id |
FGV_f926652b7d9fbb892737b51c523c06a8 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/16614 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Ferman, BrunoPinto, Cristine Campos de XavierEscolas::EESP2016-06-16T17:45:14Z2019-07-31T18:22:57Z2016-06-16T17:45:14Z2019-07-31T18:22:57Z2016-06-16421https://hdl.handle.net/10438/16614VERSÃO ATUALIZADA DE ABRIL DE 2018 DISPONÍVEL.The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The idea of the SC method is to use the pre-treatment periods to estimate weights such that a weighted average of the control units reconstructs the pre-treatment outcomes of the treated unit, and then use these weights to construct a counterfactual for the treated unit. \cite{Abadie2010} show that, if the pre-treatment match is close to perfect, then the bias of the SC estimator is bounded by a term that goes to zero with the number of pre-treatment periods ($T_0$). In this paper, we revisit the SC method in a linear factor model setting and consider the asymptotic properties of the SC estimator when $T_0$ goes to infinity. Differently from \cite{Abadie2010}, we do not condition the analysis on a close-to-perfect pre-treatment match, as the probability that this happens goes to zero when $T_0$ is large. We show that, in our setting, the SC estimator is asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. If errors are stationary, then the asymptotic bias of the SC estimator goes to zero when the transitory shocks are small, which is also the case in which it is more likely that the pre-treatment match will be good for a given $T_0$. Still, we show that the SC method can substantially improve over the difference-in-differences (DID) estimator even when a close-to-perfect fit is not achieved. However, in this case the method would rely on stronger identification assumptions. If a subset of the common factors is non-stationary, then we show that the SC weights might not reconstruct the factor loadings related to stationary common factors, even conditional on a close-to-perfect fit. While this is a scenario where the SC method significantly improves relative to DID, an important qualification is that the identification assumption in this case relies on orthogonality between treatment assignment and the stationary common factors. Finally, we suggest a modification in the permutation test proposed by \cite{Abadie2010} that has good asymptotic properties if the SC estimator is unbiased.engEESP - Textos para Discussão;TD 421Synthetic controlDiference-in-diferencesLinear factor modelEconomiaEconomiaModelos econométricosRevisiting the synthetic control estimatorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlereponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessFGV EESP - Textos para Discussão / Working Paper SeriesORIGINALTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdfTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdfapplication/pdf1128923https://repositorio.fgv.br/bitstreams/58bfea98-9afd-43a4-948f-cb1824dc8072/downloadcd7dda368ecef312c5804831503dd0b1MD512018-04.pdf2018-04.pdfapplication/pdf956867https://repositorio.fgv.br/bitstreams/6ede630d-81af-459f-bdae-d10401378eab/download55514f0f0d1fd4641c72fc49088cef19MD56THUMBNAILthumb_dc.jpgthumb_dc.jpgimage/jpeg3964https://repositorio.fgv.br/bitstreams/92c93574-4b8f-442e-8098-a384103d0d76/download1d5aa38d1e7f8a1de87cab24d1842ff8MD52TD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.jpgTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.jpgGenerated Thumbnailimage/jpeg6283https://repositorio.fgv.br/bitstreams/c20aa265-3a4a-467c-8f20-f39ae42e2d2d/download60129d4d16986be2ab50a6d84b6919a1MD5142018-04.pdf.jpg2018-04.pdf.jpgGenerated Thumbnailimage/jpeg3801https://repositorio.fgv.br/bitstreams/edf346d2-72fd-48a6-92f7-076144c573b1/download9b83f8429d800d1350f2d8c10bd23f56MD516LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/15032b27-2190-49f9-9ce5-b088f71b9860/downloaddfb340242cced38a6cca06c627998fa1MD53TEXTTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.txtTD 421 - Bruno Ferman e Cristine Pinto_v2017.pdf.txtExtracted texttext/plain103981https://repositorio.fgv.br/bitstreams/674944ec-68b0-425e-9d58-9fb5728ff4e2/download63d8c402854c8662205b0488485e3d2cMD5132018-04.pdf.txt2018-04.pdf.txtExtracted texttext/plain102451https://repositorio.fgv.br/bitstreams/0687c57c-b560-4b4a-972d-26b1fd42aa06/downloadb5e561f336fa4f7b9dce838d2729b513MD51510438/166142023-11-03 23:36:05.71open.accessoai:repositorio.fgv.br:10438/16614https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-03T23:36:05Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
Revisiting the synthetic control estimator |
title |
Revisiting the synthetic control estimator |
spellingShingle |
Revisiting the synthetic control estimator Ferman, Bruno Synthetic control Diference-in-diferences Linear factor model Economia Economia Modelos econométricos |
title_short |
Revisiting the synthetic control estimator |
title_full |
Revisiting the synthetic control estimator |
title_fullStr |
Revisiting the synthetic control estimator |
title_full_unstemmed |
Revisiting the synthetic control estimator |
title_sort |
Revisiting the synthetic control estimator |
author |
Ferman, Bruno |
author_facet |
Ferman, Bruno Pinto, Cristine Campos de Xavier |
author_role |
author |
author2 |
Pinto, Cristine Campos de Xavier |
author2_role |
author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EESP |
dc.contributor.author.fl_str_mv |
Ferman, Bruno Pinto, Cristine Campos de Xavier |
dc.subject.eng.fl_str_mv |
Synthetic control |
topic |
Synthetic control Diference-in-diferences Linear factor model Economia Economia Modelos econométricos |
dc.subject.por.fl_str_mv |
Diference-in-diferences Linear factor model |
dc.subject.area.por.fl_str_mv |
Economia |
dc.subject.bibliodata.por.fl_str_mv |
Economia Modelos econométricos |
description |
VERSÃO ATUALIZADA DE ABRIL DE 2018 DISPONÍVEL. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-06-16T17:45:14Z 2019-07-31T18:22:57Z |
dc.date.available.fl_str_mv |
2016-06-16T17:45:14Z 2019-07-31T18:22:57Z |
dc.date.issued.fl_str_mv |
2016-06-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/16614 |
dc.identifier.sici.none.fl_str_mv |
421 |
identifier_str_mv |
421 |
url |
https://hdl.handle.net/10438/16614 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.por.fl_str_mv |
EESP - Textos para Discussão;TD 421 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/58bfea98-9afd-43a4-948f-cb1824dc8072/download https://repositorio.fgv.br/bitstreams/6ede630d-81af-459f-bdae-d10401378eab/download https://repositorio.fgv.br/bitstreams/92c93574-4b8f-442e-8098-a384103d0d76/download https://repositorio.fgv.br/bitstreams/c20aa265-3a4a-467c-8f20-f39ae42e2d2d/download https://repositorio.fgv.br/bitstreams/edf346d2-72fd-48a6-92f7-076144c573b1/download https://repositorio.fgv.br/bitstreams/15032b27-2190-49f9-9ce5-b088f71b9860/download https://repositorio.fgv.br/bitstreams/674944ec-68b0-425e-9d58-9fb5728ff4e2/download https://repositorio.fgv.br/bitstreams/0687c57c-b560-4b4a-972d-26b1fd42aa06/download |
bitstream.checksum.fl_str_mv |
cd7dda368ecef312c5804831503dd0b1 55514f0f0d1fd4641c72fc49088cef19 1d5aa38d1e7f8a1de87cab24d1842ff8 60129d4d16986be2ab50a6d84b6919a1 9b83f8429d800d1350f2d8c10bd23f56 dfb340242cced38a6cca06c627998fa1 63d8c402854c8662205b0488485e3d2c b5e561f336fa4f7b9dce838d2729b513 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797869228916736 |