The path most traveled: travel demand estimation using big data resources
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
Texto Completo: | http://hdl.handle.net/10438/24893 |
Resumo: | Rapid urbanization is placing increasing stress on already burdened transportation infrastructure. Ubiquitous mobile computing and the massive data it generates presents new opportunities to measure the demand for this infrastructure, diagnose problems, and plan for the future. However, before these benefits can be realized, methods and models must be updated to integrate these new data sources into existing urban and transportation planning frameworks for estimating travel demand and infrastructure usage. While recent work has made great progress extracting valid and useful measurements from new data resources, few present end-to-end solutions that transform and integrate raw, massive data into estimates of travel demand and infrastructure performance. Here we present a flexible, modular, and computationally efficient software system to fill this gap. Our system estimates multiple aspects of travel demand using call detail records (CDRs) from mobile phones in conjunction with open- and crowdsourced geospatial data, census records, and surveys. We bring together numerous existing and new algorithms to generate representative origin–destination matrices, route trips through road networks constructed using open and crowd-sourced data repositories, and perform analytics on the system’s output. We also present an online, interactive visualization platform to communicate these results to researchers, policy makers, and the public. We demonstrate the flexibility of this system by performing analyses on multiple cities around the globe. We hope this work will serve as unified and comprehensive guide to integrating new big data resources into customary transportation demand modeling. |
id |
FGV_f9dc606536755dbd33e1c54d2b661088 |
---|---|
oai_identifier_str |
oai:repositorio.fgv.br:10438/24893 |
network_acronym_str |
FGV |
network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
repository_id_str |
3974 |
spelling |
Toole, Jameson L.Colak, SerdarSturt, BradleyAlexander, Lauren P.Evsukoff, Alexandre GonçalvesGonzález, Marta C.Escolas::EMApDemais unidades::RPCA2018-10-16T14:04:24Z2018-10-16T14:04:24Z2016http://hdl.handle.net/10438/24893Rapid urbanization is placing increasing stress on already burdened transportation infrastructure. Ubiquitous mobile computing and the massive data it generates presents new opportunities to measure the demand for this infrastructure, diagnose problems, and plan for the future. However, before these benefits can be realized, methods and models must be updated to integrate these new data sources into existing urban and transportation planning frameworks for estimating travel demand and infrastructure usage. While recent work has made great progress extracting valid and useful measurements from new data resources, few present end-to-end solutions that transform and integrate raw, massive data into estimates of travel demand and infrastructure performance. Here we present a flexible, modular, and computationally efficient software system to fill this gap. Our system estimates multiple aspects of travel demand using call detail records (CDRs) from mobile phones in conjunction with open- and crowdsourced geospatial data, census records, and surveys. We bring together numerous existing and new algorithms to generate representative origin–destination matrices, route trips through road networks constructed using open and crowd-sourced data repositories, and perform analytics on the system’s output. We also present an online, interactive visualization platform to communicate these results to researchers, policy makers, and the public. We demonstrate the flexibility of this system by performing analyses on multiple cities around the globe. We hope this work will serve as unified and comprehensive guide to integrating new big data resources into customary transportation demand modeling.engMobilityLocation based servicesCongestionRoad networksMobile phone dataMatemáticaMobilidade urbana - Métodos estatísticos - Processamento de dadosBig dataMineração de dados (Computação)The path most traveled: travel demand estimation using big data resourcesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessPadrões de Mobilidade UrbanaProjetos de Pesquisa AplicadaTEXTThePathMostTraveled_TransportationResearch (1).pdf.txtThePathMostTraveled_TransportationResearch (1).pdf.txtExtracted texttext/plain77513https://repositorio.fgv.br/bitstreams/304dd712-479b-4b84-b830-901e127d84d8/download90fb9a25ea1ac30fe2478dc1a50e56a0MD512ThePathMostTraveled_Slides.pdf.txtThePathMostTraveled_Slides.pdf.txtExtracted texttext/plain7705https://repositorio.fgv.br/bitstreams/6b393d16-2e4f-4f59-923e-ba7a16555e4b/downloadbdc275b332a93824ac9ba76d9592d934MD514ORIGINALThePathMostTraveled_TransportationResearch (1).pdfThePathMostTraveled_TransportationResearch (1).pdfapplication/pdf4703731https://repositorio.fgv.br/bitstreams/877ec607-dbf2-4b56-b76a-fb35f765ea45/download9a6504d09f4be38c49a2b7afccfa73f1MD51ThePathMostTraveled_Slides.pdfThePathMostTraveled_Slides.pdfapplication/pdf1467238https://repositorio.fgv.br/bitstreams/f40d02a2-3a6f-4820-a134-c0256b319f21/download8c8981a78f5ee90083e5f0e87ea5ecc1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/da1f1091-150a-4a27-8b55-5fe39300c5a4/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILThePathMostTraveled_TransportationResearch (1).pdf.jpgThePathMostTraveled_TransportationResearch (1).pdf.jpgGenerated Thumbnailimage/jpeg5199https://repositorio.fgv.br/bitstreams/6018a0a4-96e2-43cb-a90a-49dc9cca4ce3/downloadefc3dee68acf808500ed5cd8fec6d6fcMD513ThePathMostTraveled_Slides.pdf.jpgThePathMostTraveled_Slides.pdf.jpgGenerated Thumbnailimage/jpeg5076https://repositorio.fgv.br/bitstreams/d1862e7c-9a88-452f-a1b3-3116f441dff1/downloadc3029884b7221eb59b187c37773bcbcaMD51510438/248932023-11-05 04:15:23.07open.accessoai:repositorio.fgv.br:10438/24893https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-05T04:15:23Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
dc.title.eng.fl_str_mv |
The path most traveled: travel demand estimation using big data resources |
title |
The path most traveled: travel demand estimation using big data resources |
spellingShingle |
The path most traveled: travel demand estimation using big data resources Toole, Jameson L. Mobility Location based services Congestion Road networks Mobile phone data Matemática Mobilidade urbana - Métodos estatísticos - Processamento de dados Big data Mineração de dados (Computação) |
title_short |
The path most traveled: travel demand estimation using big data resources |
title_full |
The path most traveled: travel demand estimation using big data resources |
title_fullStr |
The path most traveled: travel demand estimation using big data resources |
title_full_unstemmed |
The path most traveled: travel demand estimation using big data resources |
title_sort |
The path most traveled: travel demand estimation using big data resources |
author |
Toole, Jameson L. |
author_facet |
Toole, Jameson L. Colak, Serdar Sturt, Bradley Alexander, Lauren P. Evsukoff, Alexandre Gonçalves González, Marta C. |
author_role |
author |
author2 |
Colak, Serdar Sturt, Bradley Alexander, Lauren P. Evsukoff, Alexandre Gonçalves González, Marta C. |
author2_role |
author author author author author |
dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp Demais unidades::RPCA |
dc.contributor.author.fl_str_mv |
Toole, Jameson L. Colak, Serdar Sturt, Bradley Alexander, Lauren P. Evsukoff, Alexandre Gonçalves González, Marta C. |
dc.subject.eng.fl_str_mv |
Mobility Location based services Congestion Road networks Mobile phone data |
topic |
Mobility Location based services Congestion Road networks Mobile phone data Matemática Mobilidade urbana - Métodos estatísticos - Processamento de dados Big data Mineração de dados (Computação) |
dc.subject.area.por.fl_str_mv |
Matemática |
dc.subject.bibliodata.por.fl_str_mv |
Mobilidade urbana - Métodos estatísticos - Processamento de dados Big data Mineração de dados (Computação) |
description |
Rapid urbanization is placing increasing stress on already burdened transportation infrastructure. Ubiquitous mobile computing and the massive data it generates presents new opportunities to measure the demand for this infrastructure, diagnose problems, and plan for the future. However, before these benefits can be realized, methods and models must be updated to integrate these new data sources into existing urban and transportation planning frameworks for estimating travel demand and infrastructure usage. While recent work has made great progress extracting valid and useful measurements from new data resources, few present end-to-end solutions that transform and integrate raw, massive data into estimates of travel demand and infrastructure performance. Here we present a flexible, modular, and computationally efficient software system to fill this gap. Our system estimates multiple aspects of travel demand using call detail records (CDRs) from mobile phones in conjunction with open- and crowdsourced geospatial data, census records, and surveys. We bring together numerous existing and new algorithms to generate representative origin–destination matrices, route trips through road networks constructed using open and crowd-sourced data repositories, and perform analytics on the system’s output. We also present an online, interactive visualization platform to communicate these results to researchers, policy makers, and the public. We demonstrate the flexibility of this system by performing analyses on multiple cities around the globe. We hope this work will serve as unified and comprehensive guide to integrating new big data resources into customary transportation demand modeling. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016 |
dc.date.accessioned.fl_str_mv |
2018-10-16T14:04:24Z |
dc.date.available.fl_str_mv |
2018-10-16T14:04:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/24893 |
url |
http://hdl.handle.net/10438/24893 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
instname_str |
Fundação Getulio Vargas (FGV) |
instacron_str |
FGV |
institution |
FGV |
reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/304dd712-479b-4b84-b830-901e127d84d8/download https://repositorio.fgv.br/bitstreams/6b393d16-2e4f-4f59-923e-ba7a16555e4b/download https://repositorio.fgv.br/bitstreams/877ec607-dbf2-4b56-b76a-fb35f765ea45/download https://repositorio.fgv.br/bitstreams/f40d02a2-3a6f-4820-a134-c0256b319f21/download https://repositorio.fgv.br/bitstreams/da1f1091-150a-4a27-8b55-5fe39300c5a4/download https://repositorio.fgv.br/bitstreams/6018a0a4-96e2-43cb-a90a-49dc9cca4ce3/download https://repositorio.fgv.br/bitstreams/d1862e7c-9a88-452f-a1b3-3116f441dff1/download |
bitstream.checksum.fl_str_mv |
90fb9a25ea1ac30fe2478dc1a50e56a0 bdc275b332a93824ac9ba76d9592d934 9a6504d09f4be38c49a2b7afccfa73f1 8c8981a78f5ee90083e5f0e87ea5ecc1 dfb340242cced38a6cca06c627998fa1 efc3dee68acf808500ed5cd8fec6d6fc c3029884b7221eb59b187c37773bcbca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
repository.mail.fl_str_mv |
|
_version_ |
1813797856672219136 |