Apoptosis as a target for gene therapy in rheumatoid arthritis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2000 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Memórias do Instituto Oswaldo Cruz |
Texto Completo: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038 |
Resumo: | Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes. |
id |
FIOCRUZ-4_f0cc0d767a44ff7c5df73946d7fdad06 |
---|---|
oai_identifier_str |
oai:scielo:S0074-02762000000700038 |
network_acronym_str |
FIOCRUZ-4 |
network_name_str |
Memórias do Instituto Oswaldo Cruz |
spelling |
Apoptosis as a target for gene therapy in rheumatoid arthritisapoptosisgene therapyrheumatoid arthritisgalectin-1Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.Instituto Oswaldo Cruz, Ministério da Saúde2000-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038Memórias do Instituto Oswaldo Cruz v.95 suppl.1 2000reponame:Memórias do Instituto Oswaldo Cruzinstname:Fundação Oswaldo Cruzinstacron:FIOCRUZ10.1590/S0074-02762000000700038info:eu-repo/semantics/openAccessRabinovich,Gabriel Adriáneng2020-04-25T17:48:30Zhttp://www.scielo.br/oai/scielo-oai.php0074-02761678-8060opendoar:null2020-04-26 02:10:04.881Memórias do Instituto Oswaldo Cruz - Fundação Oswaldo Cruztrue |
dc.title.none.fl_str_mv |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
title |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
spellingShingle |
Apoptosis as a target for gene therapy in rheumatoid arthritis Rabinovich,Gabriel Adrián apoptosis gene therapy rheumatoid arthritis galectin-1 |
title_short |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
title_full |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
title_fullStr |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
title_full_unstemmed |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
title_sort |
Apoptosis as a target for gene therapy in rheumatoid arthritis |
author |
Rabinovich,Gabriel Adrián |
author_facet |
Rabinovich,Gabriel Adrián |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rabinovich,Gabriel Adrián |
dc.subject.por.fl_str_mv |
apoptosis gene therapy rheumatoid arthritis galectin-1 |
topic |
apoptosis gene therapy rheumatoid arthritis galectin-1 |
dc.description.none.fl_txt_mv |
Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes. |
description |
Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038 |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0074-02762000000700038 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Instituto Oswaldo Cruz, Ministério da Saúde |
publisher.none.fl_str_mv |
Instituto Oswaldo Cruz, Ministério da Saúde |
dc.source.none.fl_str_mv |
Memórias do Instituto Oswaldo Cruz v.95 suppl.1 2000 reponame:Memórias do Instituto Oswaldo Cruz instname:Fundação Oswaldo Cruz instacron:FIOCRUZ |
reponame_str |
Memórias do Instituto Oswaldo Cruz |
collection |
Memórias do Instituto Oswaldo Cruz |
instname_str |
Fundação Oswaldo Cruz |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
repository.name.fl_str_mv |
Memórias do Instituto Oswaldo Cruz - Fundação Oswaldo Cruz |
repository.mail.fl_str_mv |
|
_version_ |
1669937681006592000 |