Apoptosis as a target for gene therapy in rheumatoid arthritis

Detalhes bibliográficos
Autor(a) principal: Rabinovich,Gabriel Adrián
Data de Publicação: 2000
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Memórias do Instituto Oswaldo Cruz
Texto Completo: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038
Resumo: Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.
id FIOCRUZ-4_f0cc0d767a44ff7c5df73946d7fdad06
oai_identifier_str oai:scielo:S0074-02762000000700038
network_acronym_str FIOCRUZ-4
network_name_str Memórias do Instituto Oswaldo Cruz
spelling Apoptosis as a target for gene therapy in rheumatoid arthritisapoptosisgene therapyrheumatoid arthritisgalectin-1Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.Instituto Oswaldo Cruz, Ministério da Saúde2000-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038Memórias do Instituto Oswaldo Cruz v.95 suppl.1 2000reponame:Memórias do Instituto Oswaldo Cruzinstname:Fundação Oswaldo Cruzinstacron:FIOCRUZ10.1590/S0074-02762000000700038info:eu-repo/semantics/openAccessRabinovich,Gabriel Adriáneng2020-04-25T17:48:30Zhttp://www.scielo.br/oai/scielo-oai.php0074-02761678-8060opendoar:null2020-04-26 02:10:04.881Memórias do Instituto Oswaldo Cruz - Fundação Oswaldo Cruztrue
dc.title.none.fl_str_mv Apoptosis as a target for gene therapy in rheumatoid arthritis
title Apoptosis as a target for gene therapy in rheumatoid arthritis
spellingShingle Apoptosis as a target for gene therapy in rheumatoid arthritis
Rabinovich,Gabriel Adrián
apoptosis
gene therapy
rheumatoid arthritis
galectin-1
title_short Apoptosis as a target for gene therapy in rheumatoid arthritis
title_full Apoptosis as a target for gene therapy in rheumatoid arthritis
title_fullStr Apoptosis as a target for gene therapy in rheumatoid arthritis
title_full_unstemmed Apoptosis as a target for gene therapy in rheumatoid arthritis
title_sort Apoptosis as a target for gene therapy in rheumatoid arthritis
author Rabinovich,Gabriel Adrián
author_facet Rabinovich,Gabriel Adrián
author_role author
dc.contributor.author.fl_str_mv Rabinovich,Gabriel Adrián
dc.subject.por.fl_str_mv apoptosis
gene therapy
rheumatoid arthritis
galectin-1
topic apoptosis
gene therapy
rheumatoid arthritis
galectin-1
dc.description.none.fl_txt_mv Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.
description Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.
publishDate 2000
dc.date.none.fl_str_mv 2000-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762000000700038
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0074-02762000000700038
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Instituto Oswaldo Cruz, Ministério da Saúde
publisher.none.fl_str_mv Instituto Oswaldo Cruz, Ministério da Saúde
dc.source.none.fl_str_mv Memórias do Instituto Oswaldo Cruz v.95 suppl.1 2000
reponame:Memórias do Instituto Oswaldo Cruz
instname:Fundação Oswaldo Cruz
instacron:FIOCRUZ
reponame_str Memórias do Instituto Oswaldo Cruz
collection Memórias do Instituto Oswaldo Cruz
instname_str Fundação Oswaldo Cruz
instacron_str FIOCRUZ
institution FIOCRUZ
repository.name.fl_str_mv Memórias do Instituto Oswaldo Cruz - Fundação Oswaldo Cruz
repository.mail.fl_str_mv
_version_ 1669937681006592000