Complete treatment of uncertainties in a model for dengue R0 estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Cadernos de Saúde Pública |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016 |
Resumo: | In real epidemic processes, the basic reproduction number R0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set. |
id |
FIOCRUZ-5_f829673af223b0605e623517bb987e80 |
---|---|
oai_identifier_str |
oai:scielo:S0102-311X2008000400016 |
network_acronym_str |
FIOCRUZ-5 |
network_name_str |
Cadernos de Saúde Pública |
repository_id_str |
|
spelling |
Complete treatment of uncertainties in a model for dengue R0 estimationBayes TheoremDengueEpidemiologic ModelsUncertaintyIn real epidemic processes, the basic reproduction number R0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2008-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016Cadernos de Saúde Pública v.24 n.4 2008reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/S0102-311X2008000400016info:eu-repo/semantics/openAccessCoelho,Flávio CodeçoCodeço,Cláudia TorresStruchiner,Claudio Joséeng2008-03-27T00:00:00Zoai:scielo:S0102-311X2008000400016Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2008-03-27T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.none.fl_str_mv |
Complete treatment of uncertainties in a model for dengue R0 estimation |
title |
Complete treatment of uncertainties in a model for dengue R0 estimation |
spellingShingle |
Complete treatment of uncertainties in a model for dengue R0 estimation Coelho,Flávio Codeço Bayes Theorem Dengue Epidemiologic Models Uncertainty |
title_short |
Complete treatment of uncertainties in a model for dengue R0 estimation |
title_full |
Complete treatment of uncertainties in a model for dengue R0 estimation |
title_fullStr |
Complete treatment of uncertainties in a model for dengue R0 estimation |
title_full_unstemmed |
Complete treatment of uncertainties in a model for dengue R0 estimation |
title_sort |
Complete treatment of uncertainties in a model for dengue R0 estimation |
author |
Coelho,Flávio Codeço |
author_facet |
Coelho,Flávio Codeço Codeço,Cláudia Torres Struchiner,Claudio José |
author_role |
author |
author2 |
Codeço,Cláudia Torres Struchiner,Claudio José |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Coelho,Flávio Codeço Codeço,Cláudia Torres Struchiner,Claudio José |
dc.subject.por.fl_str_mv |
Bayes Theorem Dengue Epidemiologic Models Uncertainty |
topic |
Bayes Theorem Dengue Epidemiologic Models Uncertainty |
description |
In real epidemic processes, the basic reproduction number R0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0102-311X2008000400016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
publisher.none.fl_str_mv |
Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz |
dc.source.none.fl_str_mv |
Cadernos de Saúde Pública v.24 n.4 2008 reponame:Cadernos de Saúde Pública instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Cadernos de Saúde Pública |
collection |
Cadernos de Saúde Pública |
repository.name.fl_str_mv |
Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br |
_version_ |
1754115727317532672 |