Complete treatment of uncertainties in a model for dengue R0 estimation

Detalhes bibliográficos
Autor(a) principal: Coelho,Flávio Codeço
Data de Publicação: 2008
Outros Autores: Codeço,Cláudia Torres, Struchiner,Claudio José
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cadernos de Saúde Pública
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016
Resumo: In real epidemic processes, the basic reproduction number R0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set.
id FIOCRUZ-5_f829673af223b0605e623517bb987e80
oai_identifier_str oai:scielo:S0102-311X2008000400016
network_acronym_str FIOCRUZ-5
network_name_str Cadernos de Saúde Pública
repository_id_str
spelling Complete treatment of uncertainties in a model for dengue R0 estimationBayes TheoremDengueEpidemiologic ModelsUncertaintyIn real epidemic processes, the basic reproduction number R0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set.Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz2008-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016Cadernos de Saúde Pública v.24 n.4 2008reponame:Cadernos de Saúde Públicainstname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZ10.1590/S0102-311X2008000400016info:eu-repo/semantics/openAccessCoelho,Flávio CodeçoCodeço,Cláudia TorresStruchiner,Claudio Joséeng2008-03-27T00:00:00Zoai:scielo:S0102-311X2008000400016Revistahttp://cadernos.ensp.fiocruz.br/csp/https://old.scielo.br/oai/scielo-oai.phpcadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br1678-44640102-311Xopendoar:2008-03-27T00:00Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.none.fl_str_mv Complete treatment of uncertainties in a model for dengue R0 estimation
title Complete treatment of uncertainties in a model for dengue R0 estimation
spellingShingle Complete treatment of uncertainties in a model for dengue R0 estimation
Coelho,Flávio Codeço
Bayes Theorem
Dengue
Epidemiologic Models
Uncertainty
title_short Complete treatment of uncertainties in a model for dengue R0 estimation
title_full Complete treatment of uncertainties in a model for dengue R0 estimation
title_fullStr Complete treatment of uncertainties in a model for dengue R0 estimation
title_full_unstemmed Complete treatment of uncertainties in a model for dengue R0 estimation
title_sort Complete treatment of uncertainties in a model for dengue R0 estimation
author Coelho,Flávio Codeço
author_facet Coelho,Flávio Codeço
Codeço,Cláudia Torres
Struchiner,Claudio José
author_role author
author2 Codeço,Cláudia Torres
Struchiner,Claudio José
author2_role author
author
dc.contributor.author.fl_str_mv Coelho,Flávio Codeço
Codeço,Cláudia Torres
Struchiner,Claudio José
dc.subject.por.fl_str_mv Bayes Theorem
Dengue
Epidemiologic Models
Uncertainty
topic Bayes Theorem
Dengue
Epidemiologic Models
Uncertainty
description In real epidemic processes, the basic reproduction number R0 is the combined outcome of multiple probabilistic events. Nevertheless, it is frequently modeled as a deterministic function of epidemiological variables. This paper discusses the importance of adequate treatment of uncertainties in such models. This is done by comparing two methods of uncertainty analysis: Monte Carlo uncertainty analysis (MCUA) and the Bayesian melding (BM) method. These methods are applied to a model for the determination of R0 of dengue fever based on entomological parameters. The BM was shown to provide a complete treatment of the uncertainties associated with model parameters. In contrast to MCUA, the incorporation of uncertainties led to realistic posterior distributions for parameter and variables. The incorporation, by the BM, of all the available information, from observational data to expert opinions, allows for the constructive use of uncertainties generating informative posterior distributions for all of the model's components that are coherent as a set.
publishDate 2008
dc.date.none.fl_str_mv 2008-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2008000400016
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0102-311X2008000400016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
publisher.none.fl_str_mv Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz
dc.source.none.fl_str_mv Cadernos de Saúde Pública v.24 n.4 2008
reponame:Cadernos de Saúde Pública
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Cadernos de Saúde Pública
collection Cadernos de Saúde Pública
repository.name.fl_str_mv Cadernos de Saúde Pública - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv cadernos@ensp.fiocruz.br||cadernos@ensp.fiocruz.br
_version_ 1754115727317532672