Analysis of beams on elastic base via variational methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/13748 |
Resumo: | The study of beams is one of the main problems investigated in Civil Engineering, and these structures are governed by differential equations. This article seeks to identify numerical solutions of the balance equation of beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments and the analytical solution, to identify the variational method that provides the best approximate solution, befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical simulations using the programming language, Phyton. We compared the solutions of the model problem for two different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and Placement provide the best approximation for vertical displacements, with a polynomial base function, while in the 2nd case the trigonometric function provides a better approximation, presenting significant variations in relation to the 1st case, due to changes in parameters, spring coefficient (K), modulus of longitudinal elasticity (E) and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, such as continuous beams and dynamic analysis of beams. |
id |
FURG-7_4c7c0911521f8a3c71e5d725a158e2f9 |
---|---|
oai_identifier_str |
oai:periodicos.furg.br:article/13748 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Analysis of beams on elastic base via variational methods Análise de vigas sobre base elástica via métodos variacionaisNumerical AnalysisBeamsVariational MethodsAnálise numéricaVigasMétodos VariacionaisThe study of beams is one of the main problems investigated in Civil Engineering, and these structures are governed by differential equations. This article seeks to identify numerical solutions of the balance equation of beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments and the analytical solution, to identify the variational method that provides the best approximate solution, befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical simulations using the programming language, Phyton. We compared the solutions of the model problem for two different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and Placement provide the best approximation for vertical displacements, with a polynomial base function, while in the 2nd case the trigonometric function provides a better approximation, presenting significant variations in relation to the 1st case, due to changes in parameters, spring coefficient (K), modulus of longitudinal elasticity (E) and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, such as continuous beams and dynamic analysis of beams.O estudo de vigas é um dos principais problemas investigados na Engenharia Civil, sendo estas estruturas regidas por equações diferenciais. Este artigo busca identificar soluções numéricas da equação de equilíbrio de vigas sobre base elástica, utilizando o Método dos Elementos Finitos e aplicando os métodos variacionais, a saber, Colocação, Sub-regiões e Método dos Mínimos Quadrados, visando comparar os resultados obtidos através de experimentações numéricas e a solução analítica, para identificar o método variacional que fornece a melhor solução aproximada, condizente com a solução analítica. Trata-se de uma revisão bibliográfica, com abordagem descritiva e realização de simulações numéricas utilizando a linguagem de programação, Phyton. Comparamos as soluções do problema modelo para dois casos diferentes, utilizando os métodos citados anteriormente, constatando que no 1° caso, os Métodos das Sub-regiões e Colocação fornecem a melhor aproximação para os deslocamentos verticais, com uma função base polinomial, enquanto no 2° caso a função trigonométrica fornece uma melhor aproximação, apresentando variações significativas em relação ao 1° caso, devido às mudanças nos parâmetros, coeficiente de mola (K), módulo de elasticidade longitudinal (E) e inércia da seção transversal (I).Universidade Federal do Rio Grande2022-07-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1374810.14295/vetor.v32i1.13748VETOR - Journal of Exact Sciences and Engineering; Vol. 32 No. 1 (2022); 31-41VETOR - Revista de Ciências Exatas e Engenharias; v. 32 n. 1 (2022); 31-412358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/13748/9604Copyright (c) 2022 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessIbiapino, Raquel PriscilaSousa, Anderson Kerlly Rodrigues2022-07-15T17:35:53Zoai:periodicos.furg.br:article/13748Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2022-07-15T17:35:53Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Analysis of beams on elastic base via variational methods Análise de vigas sobre base elástica via métodos variacionais |
title |
Analysis of beams on elastic base via variational methods |
spellingShingle |
Analysis of beams on elastic base via variational methods Ibiapino, Raquel Priscila Numerical Analysis Beams Variational Methods Análise numérica Vigas Métodos Variacionais |
title_short |
Analysis of beams on elastic base via variational methods |
title_full |
Analysis of beams on elastic base via variational methods |
title_fullStr |
Analysis of beams on elastic base via variational methods |
title_full_unstemmed |
Analysis of beams on elastic base via variational methods |
title_sort |
Analysis of beams on elastic base via variational methods |
author |
Ibiapino, Raquel Priscila |
author_facet |
Ibiapino, Raquel Priscila Sousa, Anderson Kerlly Rodrigues |
author_role |
author |
author2 |
Sousa, Anderson Kerlly Rodrigues |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ibiapino, Raquel Priscila Sousa, Anderson Kerlly Rodrigues |
dc.subject.por.fl_str_mv |
Numerical Analysis Beams Variational Methods Análise numérica Vigas Métodos Variacionais |
topic |
Numerical Analysis Beams Variational Methods Análise numérica Vigas Métodos Variacionais |
description |
The study of beams is one of the main problems investigated in Civil Engineering, and these structures are governed by differential equations. This article seeks to identify numerical solutions of the balance equation of beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments and the analytical solution, to identify the variational method that provides the best approximate solution, befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical simulations using the programming language, Phyton. We compared the solutions of the model problem for two different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and Placement provide the best approximation for vertical displacements, with a polynomial base function, while in the 2nd case the trigonometric function provides a better approximation, presenting significant variations in relation to the 1st case, due to changes in parameters, spring coefficient (K), modulus of longitudinal elasticity (E) and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, such as continuous beams and dynamic analysis of beams. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-15 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/13748 10.14295/vetor.v32i1.13748 |
url |
https://periodicos.furg.br/vetor/article/view/13748 |
identifier_str_mv |
10.14295/vetor.v32i1.13748 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/13748/9604 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 32 No. 1 (2022); 31-41 VETOR - Revista de Ciências Exatas e Engenharias; v. 32 n. 1 (2022); 31-41 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1797041760328744960 |