Analysis of beams on elastic base via variational methods

Detalhes bibliográficos
Autor(a) principal: Ibiapino, Raquel Priscila
Data de Publicação: 2022
Outros Autores: Sousa, Anderson Kerlly Rodrigues
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/13748
Resumo: The study of beams is one of the main problems investigated in Civil Engineering, and these structures are governed by differential equations. This article seeks to identify numerical solutions of the balance equation of beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments and the analytical solution, to identify the variational method that provides the best approximate solution, befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical simulations using the programming language, Phyton. We compared the solutions of the model problem for two different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and Placement provide the best approximation for vertical displacements, with a polynomial base function, while in the 2nd case the trigonometric function provides a better approximation, presenting significant variations in relation to the 1st case, due to changes in parameters, spring coefficient (K), modulus of longitudinal elasticity (E) and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, such as continuous beams and dynamic analysis of beams.
id FURG-7_4c7c0911521f8a3c71e5d725a158e2f9
oai_identifier_str oai:periodicos.furg.br:article/13748
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Analysis of beams on elastic base via variational methods Análise de vigas sobre base elástica via métodos variacionaisNumerical AnalysisBeamsVariational MethodsAnálise numéricaVigasMétodos VariacionaisThe study of beams is one of the main problems investigated in Civil Engineering, and these structures are governed by differential equations. This article seeks to identify numerical solutions of the balance equation of beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments and the analytical solution, to identify the variational method that provides the best approximate solution, befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical simulations using the programming language, Phyton. We compared the solutions of the model problem for two different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and Placement provide the best approximation for vertical displacements, with a polynomial base function, while in the 2nd case the trigonometric function provides a better approximation, presenting significant variations in relation to the 1st case, due to changes in parameters, spring coefficient (K), modulus of longitudinal elasticity (E) and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, such as continuous beams and dynamic analysis of beams.O estudo de vigas é um dos principais problemas investigados na Engenharia Civil, sendo estas estruturas regidas por equações diferenciais. Este artigo busca identificar soluções numéricas da equação de equilíbrio de vigas sobre base elástica, utilizando o Método dos Elementos Finitos e aplicando os métodos variacionais, a saber, Colocação, Sub-regiões e Método dos Mínimos Quadrados, visando comparar os resultados obtidos através de experimentações numéricas e a solução analítica, para identificar o método variacional que fornece a melhor solução aproximada, condizente com a solução analítica. Trata-se de uma revisão bibliográfica, com abordagem descritiva e realização de simulações numéricas utilizando a linguagem de programação, Phyton. Comparamos as soluções do problema modelo para dois casos diferentes, utilizando os métodos citados anteriormente, constatando que no 1° caso, os Métodos das Sub-regiões e Colocação fornecem a melhor aproximação para os deslocamentos verticais, com uma função base polinomial, enquanto no 2° caso a função trigonométrica fornece uma melhor aproximação, apresentando variações significativas em relação ao 1° caso, devido às mudanças nos parâmetros, coeficiente de mola (K), módulo de elasticidade longitudinal (E) e inércia da seção transversal (I).Universidade Federal do Rio Grande2022-07-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1374810.14295/vetor.v32i1.13748VETOR - Journal of Exact Sciences and Engineering; Vol. 32 No. 1 (2022); 31-41VETOR - Revista de Ciências Exatas e Engenharias; v. 32 n. 1 (2022); 31-412358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/13748/9604Copyright (c) 2022 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessIbiapino, Raquel PriscilaSousa, Anderson Kerlly Rodrigues2022-07-15T17:35:53Zoai:periodicos.furg.br:article/13748Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2022-07-15T17:35:53Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Analysis of beams on elastic base via variational methods
Análise de vigas sobre base elástica via métodos variacionais
title Analysis of beams on elastic base via variational methods
spellingShingle Analysis of beams on elastic base via variational methods
Ibiapino, Raquel Priscila
Numerical Analysis
Beams
Variational Methods
Análise numérica
Vigas
Métodos Variacionais
title_short Analysis of beams on elastic base via variational methods
title_full Analysis of beams on elastic base via variational methods
title_fullStr Analysis of beams on elastic base via variational methods
title_full_unstemmed Analysis of beams on elastic base via variational methods
title_sort Analysis of beams on elastic base via variational methods
author Ibiapino, Raquel Priscila
author_facet Ibiapino, Raquel Priscila
Sousa, Anderson Kerlly Rodrigues
author_role author
author2 Sousa, Anderson Kerlly Rodrigues
author2_role author
dc.contributor.author.fl_str_mv Ibiapino, Raquel Priscila
Sousa, Anderson Kerlly Rodrigues
dc.subject.por.fl_str_mv Numerical Analysis
Beams
Variational Methods
Análise numérica
Vigas
Métodos Variacionais
topic Numerical Analysis
Beams
Variational Methods
Análise numérica
Vigas
Métodos Variacionais
description The study of beams is one of the main problems investigated in Civil Engineering, and these structures are governed by differential equations. This article seeks to identify numerical solutions of the balance equation of beams on elastic basis, using the Finite Element Method and applying the variational methods, i.e., Placement, Sub-regions and Least Squares Method, aiming to compare the results obtained through numerical experiments and the analytical solution, to identify the variational method that provides the best approximate solution, befitting the analytical solution. This is a bibliographic review, with descriptive approach and numerical simulations using the programming language, Phyton. We compared the solutions of the model problem for two different cases, using the methods mentioned above, noting that in the 1st case, the Methods of Sub-regions and Placement provide the best approximation for vertical displacements, with a polynomial base function, while in the 2nd case the trigonometric function provides a better approximation, presenting significant variations in relation to the 1st case, due to changes in parameters, spring coefficient (K), modulus of longitudinal elasticity (E) and cross-sectional inertia (I). Thus, starting from this formulation, other problems frequently encountered in engineering can be analyzed, such as continuous beams and dynamic analysis of beams.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/13748
10.14295/vetor.v32i1.13748
url https://periodicos.furg.br/vetor/article/view/13748
identifier_str_mv 10.14295/vetor.v32i1.13748
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/13748/9604
dc.rights.driver.fl_str_mv Copyright (c) 2022 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 32 No. 1 (2022); 31-41
VETOR - Revista de Ciências Exatas e Engenharias; v. 32 n. 1 (2022); 31-41
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041760328744960