Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/15167 |
Resumo: | Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy. |
id |
FURG-7_76827385406e230eeafa1fd557cdbfb8 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.furg.br:article/15167 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning ApproachesAvaliação do perfil termogravimétrico de membranas híbridas de acetato de celulose empregando abordagens de aprendizado de máquinacellulose acetate membranesmachine learningThermogravimetric analysis (TG)cellulose acetate membranesmachine learningMembranas híbridas de acetato de celulose Análise termogravimétricaAprendizado de máquinaThermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.A análise termogravimétrica (TGA) é uma técnica de caracterização rotineiramente utilizada na ciência dos materiais. Neste caso particular, a TGA determina a variação de massa com a temperatura. A análise termogravimétrica das membranas híbridas de acetato de celulose (CA) pode fornecer resultados muito semelhantes, apesar de sua composição química diferente. O presente estudo utiliza algoritmos de aprendizado de máquina para tentar correlacionar dados de análises termogravimétricas com variações na composição química. Pontos experimentais relacionados à temperatura e massa dessas análises foram tratados de diferentes maneiras e utilizados para estimar a composição das membranas. Os algoritmos Extra-Trees Classifier, Random Forest, Decision Tree e K-Nearest Neighbors (KNN) foram aplicados a esses dados e, em seguida, avaliados usando uma matriz de confusão e de acurácia. Os algoritmos baseados em árvore de decisão mostraram habilidade superior na estimativa da composição, com diferenças menores no perfil termogravimétrico. O algoritmo Extra-Trees Classifier, em particular, destacou-se por sua habilidade em estimar a composição em todos os testes, atingindo 90% de acurácia.Universidade Federal do Rio Grande2023-06-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1516710.14295/vetor.v33i1.15167VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 1 (2023); 51-59VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 1 (2023); 51-592358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/15167/10215Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessFrança dos Santos, FilipiDa Silveira, Kelly CristinaCarrielo, Daniela HerdyFerreira, Gesiane MendonçaDomingues, Guilherme de Melo BaptistaAndrade, Monica Calixto2023-06-28T19:45:16Zoai:ojs.periodicos.furg.br:article/15167Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-06-28T19:45:16Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches Avaliação do perfil termogravimétrico de membranas híbridas de acetato de celulose empregando abordagens de aprendizado de máquina |
title |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches |
spellingShingle |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches França dos Santos, Filipi cellulose acetate membranes machine learning Thermogravimetric analysis (TG) cellulose acetate membranes machine learning Membranas híbridas de acetato de celulose Análise termogravimétrica Aprendizado de máquina |
title_short |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches |
title_full |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches |
title_fullStr |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches |
title_full_unstemmed |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches |
title_sort |
Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches |
author |
França dos Santos, Filipi |
author_facet |
França dos Santos, Filipi Da Silveira, Kelly Cristina Carrielo, Daniela Herdy Ferreira, Gesiane Mendonça Domingues, Guilherme de Melo Baptista Andrade, Monica Calixto |
author_role |
author |
author2 |
Da Silveira, Kelly Cristina Carrielo, Daniela Herdy Ferreira, Gesiane Mendonça Domingues, Guilherme de Melo Baptista Andrade, Monica Calixto |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
França dos Santos, Filipi Da Silveira, Kelly Cristina Carrielo, Daniela Herdy Ferreira, Gesiane Mendonça Domingues, Guilherme de Melo Baptista Andrade, Monica Calixto |
dc.subject.por.fl_str_mv |
cellulose acetate membranes machine learning Thermogravimetric analysis (TG) cellulose acetate membranes machine learning Membranas híbridas de acetato de celulose Análise termogravimétrica Aprendizado de máquina |
topic |
cellulose acetate membranes machine learning Thermogravimetric analysis (TG) cellulose acetate membranes machine learning Membranas híbridas de acetato de celulose Análise termogravimétrica Aprendizado de máquina |
description |
Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/15167 10.14295/vetor.v33i1.15167 |
url |
https://periodicos.furg.br/vetor/article/view/15167 |
identifier_str_mv |
10.14295/vetor.v33i1.15167 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/15167/10215 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 1 (2023); 51-59 VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 1 (2023); 51-59 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1797041760275267584 |