Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches

Detalhes bibliográficos
Autor(a) principal: França dos Santos, Filipi
Data de Publicação: 2023
Outros Autores: Da Silveira, Kelly Cristina, Carrielo, Daniela Herdy, Ferreira, Gesiane Mendonça, Domingues, Guilherme de Melo Baptista, Andrade, Monica Calixto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/15167
Resumo: Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.
id FURG-7_76827385406e230eeafa1fd557cdbfb8
oai_identifier_str oai:ojs.periodicos.furg.br:article/15167
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning ApproachesAvaliação do perfil termogravimétrico de membranas híbridas de acetato de celulose empregando abordagens de aprendizado de máquinacellulose acetate membranesmachine learningThermogravimetric analysis (TG)cellulose acetate membranesmachine learningMembranas híbridas de acetato de celulose Análise termogravimétricaAprendizado de máquinaThermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.A análise termogravimétrica (TGA) é uma técnica de caracterização rotineiramente utilizada na ciência dos materiais. Neste caso particular, a TGA determina a variação de massa com a temperatura. A análise termogravimétrica das membranas híbridas de acetato de celulose (CA) pode fornecer resultados muito semelhantes, apesar de sua composição química diferente. O presente estudo utiliza algoritmos de aprendizado de máquina para tentar correlacionar dados de análises termogravimétricas com variações na composição química. Pontos experimentais relacionados à temperatura e massa dessas análises foram tratados de diferentes maneiras e utilizados para estimar a composição das membranas. Os algoritmos Extra-Trees Classifier, Random Forest, Decision Tree e K-Nearest Neighbors (KNN) foram aplicados a esses dados e, em seguida, avaliados usando uma matriz de confusão e de acurácia. Os algoritmos baseados em árvore de decisão mostraram habilidade superior na estimativa da composição, com diferenças menores no perfil termogravimétrico. O algoritmo Extra-Trees Classifier, em particular, destacou-se por sua habilidade em estimar a composição em todos os testes, atingindo 90% de acurácia.Universidade Federal do Rio Grande2023-06-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1516710.14295/vetor.v33i1.15167VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 1 (2023); 51-59VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 1 (2023); 51-592358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/15167/10215Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessFrança dos Santos, FilipiDa Silveira, Kelly CristinaCarrielo, Daniela HerdyFerreira, Gesiane MendonçaDomingues, Guilherme de Melo BaptistaAndrade, Monica Calixto2023-06-28T19:45:16Zoai:ojs.periodicos.furg.br:article/15167Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-06-28T19:45:16Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
Avaliação do perfil termogravimétrico de membranas híbridas de acetato de celulose empregando abordagens de aprendizado de máquina
title Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
spellingShingle Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
França dos Santos, Filipi
cellulose acetate membranes
machine learning
Thermogravimetric analysis (TG)
cellulose acetate membranes
machine learning
Membranas híbridas de acetato de celulose
Análise termogravimétrica
Aprendizado de máquina
title_short Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
title_full Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
title_fullStr Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
title_full_unstemmed Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
title_sort Evaluation of the Thermogravimetric Profile of Hybrid Cellulose Acetate Membranes using Machine Learning Approaches
author França dos Santos, Filipi
author_facet França dos Santos, Filipi
Da Silveira, Kelly Cristina
Carrielo, Daniela Herdy
Ferreira, Gesiane Mendonça
Domingues, Guilherme de Melo Baptista
Andrade, Monica Calixto
author_role author
author2 Da Silveira, Kelly Cristina
Carrielo, Daniela Herdy
Ferreira, Gesiane Mendonça
Domingues, Guilherme de Melo Baptista
Andrade, Monica Calixto
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv França dos Santos, Filipi
Da Silveira, Kelly Cristina
Carrielo, Daniela Herdy
Ferreira, Gesiane Mendonça
Domingues, Guilherme de Melo Baptista
Andrade, Monica Calixto
dc.subject.por.fl_str_mv cellulose acetate membranes
machine learning
Thermogravimetric analysis (TG)
cellulose acetate membranes
machine learning
Membranas híbridas de acetato de celulose
Análise termogravimétrica
Aprendizado de máquina
topic cellulose acetate membranes
machine learning
Thermogravimetric analysis (TG)
cellulose acetate membranes
machine learning
Membranas híbridas de acetato de celulose
Análise termogravimétrica
Aprendizado de máquina
description Thermogravimetric analysis (TGA) is a characterization technique routinely used in materials science. In this particular case, TGA determines the variation of weight with temperature. The thermogravimetric analysis of cellulose acetate (CA) hybrid membranes can provide similar results, despite their different chemical composition. The present study uses machine learning algorithms to correlate data from thermogravimetric analyses with variations in chemical composition. Experimental points relating to temperature and weight from these analyses were treated in different ways and used to estimate the composition of the membranes. The Extra-Trees Classifier, Random Forest, Decision Tree, and K-Nearest Neighbors (KNN) algorithms were applied to this data and then evaluated using a confusion and accuracy matrix. The decision tree-based algorithms demonstrated a superior capacity for estimating the composition, albeit with negligible disparities in the thermogravimetric profile. The Extra-Trees Classifier algorithm, in particular, stood out for its ability to estimate composition in all tests, achieving 90% accuracy.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/15167
10.14295/vetor.v33i1.15167
url https://periodicos.furg.br/vetor/article/view/15167
identifier_str_mv 10.14295/vetor.v33i1.15167
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/15167/10215
dc.rights.driver.fl_str_mv Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 33 No. 1 (2023); 51-59
VETOR - Revista de Ciências Exatas e Engenharias; v. 33 n. 1 (2023); 51-59
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041760275267584