Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Vetor (Online) |
Texto Completo: | https://periodicos.furg.br/vetor/article/view/1704 |
Resumo: | Pollutant dispersion in rivers occurs as a consequence of diffusion and advection both transversal and longitudinal dretions of the flow. The contribution related to the diffusion process, ruled by Fick´s law, is proportional to diffusion coefficient, which must be estimated. In this work a new analytical solution to the Korteweg-de-Vries equation is obtained, in order to evaluate the increase in the mass diffusivity due to the action of gravity waves along water bodies. The proposed method consists in mapping the original KdV equation into an ordinary differential one whose solution is obtained by integration. When a soliton or a wave packet is produced on the surface, a certain amount of water is transferred from the neighborhoods, carrying the pollutants by means of advection transport. However, since the oscillations are alternant along the water body, and the typical wavelength of the packets is much smaller than the distance between margins, this advection process can be regarded as an isotropic diffusion mechanism, when observed at a geographic scale. Hence, the mass diffusivity due to the gravity waves can be estimated from the local values for the laplacian and the time derivative of the concentration distribution, obtained through a mass balance in a region around the soliton. Numerical solutions are presented. |
id |
FURG-7_8d0c766858a0cf7569b298dcd370c70f |
---|---|
oai_identifier_str |
oai:periodicos.furg.br:article/1704 |
network_acronym_str |
FURG-7 |
network_name_str |
Vetor (Online) |
repository_id_str |
|
spelling |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equationDefinição do coeficiente de difusão para propagação de poluentes em águas rasas empregando um modelo baseado em soluções exatas para a equação de Korteweg-De-VriesModelo de dispersão de poluentesEquação KdVEquações diferenciaisPollutant dispersion in rivers occurs as a consequence of diffusion and advection both transversal and longitudinal dretions of the flow. The contribution related to the diffusion process, ruled by Fick´s law, is proportional to diffusion coefficient, which must be estimated. In this work a new analytical solution to the Korteweg-de-Vries equation is obtained, in order to evaluate the increase in the mass diffusivity due to the action of gravity waves along water bodies. The proposed method consists in mapping the original KdV equation into an ordinary differential one whose solution is obtained by integration. When a soliton or a wave packet is produced on the surface, a certain amount of water is transferred from the neighborhoods, carrying the pollutants by means of advection transport. However, since the oscillations are alternant along the water body, and the typical wavelength of the packets is much smaller than the distance between margins, this advection process can be regarded as an isotropic diffusion mechanism, when observed at a geographic scale. Hence, the mass diffusivity due to the gravity waves can be estimated from the local values for the laplacian and the time derivative of the concentration distribution, obtained through a mass balance in a region around the soliton. Numerical solutions are presented.A dispersão de poluentes no meio aquático decorre dos processos de advecção e difusão, cuja propagação se produz no sentido longitudinal e transversal ao escoamento do corpo hídrico. A contribuição associada ao processo difusivo, regido pela lei de Fick, é proporcional ao coeficiente de difusão, cujo valor deve ser estimado. Neste trabalho é obtida uma solução analítica para a equação de Korteweg-de-Vries (KdV) a fim de avaliar o coeficiente de difusão baseado na ação de ondas de gravidade em corpos hídricos. O método proposto consiste na transformação da equação KdV em sua forma original em uma equação diferencial ordinária cuja solução é obtida através de integração. Quando uma onda solitária ou um trem de ondas é produzido na superfície de um rio, uma determinada quantidade de água é transferida a partir das vizinhanças, transportando poluentes por advecção. Contudo, uma vez que as oscilações são alternantes ao longo do corpo hídrico, e o comprimento de onda típico das vagas é muito inferior à distância entre margens, esse processo de advecção pode ser considerado um mecanismo de difusão isotrópica, quando observado em escala geográfica. Desse modo, a difusividade mássica pode ser estimada a partir de valores locais para o laplaciano e a derivada temporal da concentração, obtidos através de um balanço de massa efetuado em torno da onda solitária. Ao final, são apresentados resultados numéricos para a situação do Lago Guaíba, em Porto Alegre.Universidade Federal do Rio Grande2010-12-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1704VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 1 (2009); 15-27VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 1 (2009); 15-272358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/1704/849Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessGarcia, Renato LetiziaZabadal, JorgeRibeiro, ViniciusPoffal, Cristiana2023-03-22T15:42:40Zoai:periodicos.furg.br:article/1704Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-03-22T15:42:40Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
dc.title.none.fl_str_mv |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation Definição do coeficiente de difusão para propagação de poluentes em águas rasas empregando um modelo baseado em soluções exatas para a equação de Korteweg-De-Vries |
title |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation |
spellingShingle |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation Garcia, Renato Letizia Modelo de dispersão de poluentes Equação KdV Equações diferenciais |
title_short |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation |
title_full |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation |
title_fullStr |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation |
title_full_unstemmed |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation |
title_sort |
Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation |
author |
Garcia, Renato Letizia |
author_facet |
Garcia, Renato Letizia Zabadal, Jorge Ribeiro, Vinicius Poffal, Cristiana |
author_role |
author |
author2 |
Zabadal, Jorge Ribeiro, Vinicius Poffal, Cristiana |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Garcia, Renato Letizia Zabadal, Jorge Ribeiro, Vinicius Poffal, Cristiana |
dc.subject.por.fl_str_mv |
Modelo de dispersão de poluentes Equação KdV Equações diferenciais |
topic |
Modelo de dispersão de poluentes Equação KdV Equações diferenciais |
description |
Pollutant dispersion in rivers occurs as a consequence of diffusion and advection both transversal and longitudinal dretions of the flow. The contribution related to the diffusion process, ruled by Fick´s law, is proportional to diffusion coefficient, which must be estimated. In this work a new analytical solution to the Korteweg-de-Vries equation is obtained, in order to evaluate the increase in the mass diffusivity due to the action of gravity waves along water bodies. The proposed method consists in mapping the original KdV equation into an ordinary differential one whose solution is obtained by integration. When a soliton or a wave packet is produced on the surface, a certain amount of water is transferred from the neighborhoods, carrying the pollutants by means of advection transport. However, since the oscillations are alternant along the water body, and the typical wavelength of the packets is much smaller than the distance between margins, this advection process can be regarded as an isotropic diffusion mechanism, when observed at a geographic scale. Hence, the mass diffusivity due to the gravity waves can be estimated from the local values for the laplacian and the time derivative of the concentration distribution, obtained through a mass balance in a region around the soliton. Numerical solutions are presented. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-10 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/1704 |
url |
https://periodicos.furg.br/vetor/article/view/1704 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/1704/849 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 1 (2009); 15-27 VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 1 (2009); 15-27 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
instname_str |
Universidade Federal do Rio Grande (FURG) |
instacron_str |
FURG |
institution |
FURG |
reponame_str |
Vetor (Online) |
collection |
Vetor (Online) |
repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
repository.mail.fl_str_mv |
gmplatt@furg.br |
_version_ |
1797041761190674432 |