Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation

Detalhes bibliográficos
Autor(a) principal: Garcia, Renato Letizia
Data de Publicação: 2010
Outros Autores: Zabadal, Jorge, Ribeiro, Vinicius, Poffal, Cristiana
Tipo de documento: Artigo
Idioma: por
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/1704
Resumo: Pollutant dispersion in rivers occurs as a consequence of diffusion and advection both transversal and longitudinal dretions of the flow. The contribution related to the diffusion process, ruled by Fick´s law, is proportional to diffusion coefficient, which must be estimated. In this work a new analytical solution to the Korteweg-de-Vries equation is obtained, in order to evaluate the increase in the mass diffusivity due to the action of gravity waves along water bodies. The proposed method consists in mapping the original KdV equation into an ordinary differential one whose solution is obtained by integration. When a soliton or a wave packet is produced on the surface, a certain amount of water is transferred from the neighborhoods, carrying the pollutants by means of advection transport. However, since the oscillations are alternant along the water body, and the typical wavelength of the packets is much smaller than the distance between margins, this advection process can be regarded as an isotropic diffusion mechanism, when observed at a geographic scale. Hence, the mass diffusivity due to the gravity waves can be estimated from the local values for the laplacian and the time derivative of the concentration distribution, obtained through a mass balance in a region around the soliton. Numerical solutions are presented.
id FURG-7_8d0c766858a0cf7569b298dcd370c70f
oai_identifier_str oai:periodicos.furg.br:article/1704
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equationDefinição do coeficiente de difusão para propagação de poluentes em águas rasas empregando um modelo baseado em soluções exatas para a equação de Korteweg-De-VriesModelo de dispersão de poluentesEquação KdVEquações diferenciaisPollutant dispersion in rivers occurs as a consequence of diffusion and advection both transversal and longitudinal dretions of the flow. The contribution related to the diffusion process, ruled by Fick´s law, is proportional to diffusion coefficient, which must be estimated. In this work a new analytical solution to the Korteweg-de-Vries equation is obtained, in order to evaluate the increase in the mass diffusivity due to the action of gravity waves along water bodies. The proposed method consists in mapping the original KdV equation into an ordinary differential one whose solution is obtained by integration. When a soliton or a wave packet is produced on the surface, a certain amount of water is transferred from the neighborhoods, carrying the pollutants by means of advection transport. However, since the oscillations are alternant along the water body, and the typical wavelength of the packets is much smaller than the distance between margins, this advection process can be regarded as an isotropic diffusion mechanism, when observed at a geographic scale. Hence, the mass diffusivity due to the gravity waves can be estimated from the local values for the laplacian and the time derivative of the concentration distribution, obtained through a mass balance in a region around the soliton. Numerical solutions are presented.A dispersão de poluentes no meio aquático decorre dos processos de advecção e difusão, cuja propagação se produz no sentido longitudinal e transversal ao escoamento do corpo hídrico. A contribuição associada ao processo difusivo, regido pela lei de Fick, é proporcional ao coeficiente de difusão, cujo valor deve ser estimado. Neste trabalho é obtida uma solução analítica para a equação de Korteweg-de-Vries (KdV) a fim de avaliar o coeficiente de difusão baseado na ação de ondas de gravidade em corpos hídricos. O método proposto consiste na transformação da equação KdV em sua forma original em uma equação diferencial ordinária cuja solução é obtida através de integração. Quando uma onda solitária ou um trem de ondas é produzido na superfície de um rio, uma determinada quantidade de água é transferida a partir das vizinhanças, transportando poluentes por advecção. Contudo, uma vez que as oscilações são alternantes ao longo do corpo hídrico, e o comprimento de onda típico das vagas é muito inferior à distância entre margens, esse processo de advecção pode ser considerado um mecanismo de difusão isotrópica, quando observado em escala geográfica. Desse modo, a difusividade mássica pode ser estimada a partir de valores locais para o laplaciano e a derivada temporal da concentração, obtidos através de um balanço de massa efetuado em torno da onda solitária. Ao final, são apresentados resultados numéricos para a situação do Lago Guaíba, em Porto Alegre.Universidade Federal do Rio Grande2010-12-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1704VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 1 (2009); 15-27VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 1 (2009); 15-272358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/1704/849Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessGarcia, Renato LetiziaZabadal, JorgeRibeiro, ViniciusPoffal, Cristiana2023-03-22T15:42:40Zoai:periodicos.furg.br:article/1704Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2023-03-22T15:42:40Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
Definição do coeficiente de difusão para propagação de poluentes em águas rasas empregando um modelo baseado em soluções exatas para a equação de Korteweg-De-Vries
title Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
spellingShingle Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
Garcia, Renato Letizia
Modelo de dispersão de poluentes
Equação KdV
Equações diferenciais
title_short Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
title_full Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
title_fullStr Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
title_full_unstemmed Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
title_sort Mass diffusivity estimation for shallow waters using exact solutions for the Korteweg-De-Vries equation
author Garcia, Renato Letizia
author_facet Garcia, Renato Letizia
Zabadal, Jorge
Ribeiro, Vinicius
Poffal, Cristiana
author_role author
author2 Zabadal, Jorge
Ribeiro, Vinicius
Poffal, Cristiana
author2_role author
author
author
dc.contributor.author.fl_str_mv Garcia, Renato Letizia
Zabadal, Jorge
Ribeiro, Vinicius
Poffal, Cristiana
dc.subject.por.fl_str_mv Modelo de dispersão de poluentes
Equação KdV
Equações diferenciais
topic Modelo de dispersão de poluentes
Equação KdV
Equações diferenciais
description Pollutant dispersion in rivers occurs as a consequence of diffusion and advection both transversal and longitudinal dretions of the flow. The contribution related to the diffusion process, ruled by Fick´s law, is proportional to diffusion coefficient, which must be estimated. In this work a new analytical solution to the Korteweg-de-Vries equation is obtained, in order to evaluate the increase in the mass diffusivity due to the action of gravity waves along water bodies. The proposed method consists in mapping the original KdV equation into an ordinary differential one whose solution is obtained by integration. When a soliton or a wave packet is produced on the surface, a certain amount of water is transferred from the neighborhoods, carrying the pollutants by means of advection transport. However, since the oscillations are alternant along the water body, and the typical wavelength of the packets is much smaller than the distance between margins, this advection process can be regarded as an isotropic diffusion mechanism, when observed at a geographic scale. Hence, the mass diffusivity due to the gravity waves can be estimated from the local values for the laplacian and the time derivative of the concentration distribution, obtained through a mass balance in a region around the soliton. Numerical solutions are presented.
publishDate 2010
dc.date.none.fl_str_mv 2010-12-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/1704
url https://periodicos.furg.br/vetor/article/view/1704
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/1704/849
dc.rights.driver.fl_str_mv Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2014 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 19 No. 1 (2009); 15-27
VETOR - Revista de Ciências Exatas e Engenharias; v. 19 n. 1 (2009); 15-27
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041761190674432