Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature

Detalhes bibliográficos
Autor(a) principal: Yamada Magalhães, Hiron Akira
Data de Publicação: 2021
Outros Autores: Souza, Talita Gama, Cardoso, Rodrigo Felix de Araujo, Silva, Bruno Rangel, Brandão, Luiz Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/13743
Resumo: Among several severe plastic deformation (SPD) methods, the Equal Channel Angular Pressing (ECAP) process is one of the most popular. This process's main characteristic is producing materials with ultra-fine or nanometric grains. Due to these microstructural changes, it is possible to improve mechanical properties such as strength and ductility. In this perspective, the aim of the present work was to evaluate the variations of the mechanical hardness property associated with microstructural and textural changes of pure copper as a function of its processing by SPD via ECAP. For this, the material was submitted to four passes through routes A (the sample is repetitively pressed without any rotation between each pass) and Bc (the sample is rotated in the same sense by 90° between each pass) at cold and warm temperatures. Through the obtained result, it was verified that the ambient temperature of the Bc route was the one that promoted greater homogeneity in the microstructure and weakening of the texture after the fourth pass. On the other hand, warm processing of copper by ECAP promoted a softening of the samples and a homogeneous distribution of hardness in both routes.
id FURG-7_93a77e28ebea3b62f6c4582f7cff29ed
oai_identifier_str oai:periodicos.furg.br:article/13743
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm TemperatureDureza e Textura do Cobre Eletrolítico Processado por ECAP em Temperatura Ambiente e a MornoCopperECAPCrystallographic TextureDislocation DensityMicrohardnessCobreECAPTextura CristalográficaDensidade de Discordâncias MicrodurezaAmong several severe plastic deformation (SPD) methods, the Equal Channel Angular Pressing (ECAP) process is one of the most popular. This process's main characteristic is producing materials with ultra-fine or nanometric grains. Due to these microstructural changes, it is possible to improve mechanical properties such as strength and ductility. In this perspective, the aim of the present work was to evaluate the variations of the mechanical hardness property associated with microstructural and textural changes of pure copper as a function of its processing by SPD via ECAP. For this, the material was submitted to four passes through routes A (the sample is repetitively pressed without any rotation between each pass) and Bc (the sample is rotated in the same sense by 90° between each pass) at cold and warm temperatures. Through the obtained result, it was verified that the ambient temperature of the Bc route was the one that promoted greater homogeneity in the microstructure and weakening of the texture after the fourth pass. On the other hand, warm processing of copper by ECAP promoted a softening of the samples and a homogeneous distribution of hardness in both routes.Dentre os diversos métodos de deformação plástica severa (DPS), o processo de extrusão por canal equiangular (ECAP – Equal Channel Angular Pressing) é um dos mais populares. Este processo tem como principal característica produzir materiais com grãos ultrafinos ou até mesmo grãos nanométricos. Devido a estas mudanças microestruturais é possível gerar melhoria em algumas propriedades mecânicas como a resistência e ductilidade. Nesta perspectiva, pretendeu-se no presente trabalho avaliar as variações da propriedade mecânica dureza associada às alterações microestruturais e texturais do cobre puro, em função das variações de parâmetros do processo por DPS via ECAP. Para isto o material foi submetido a quatro passes através das rotas A (a amostra é pressionada repetidamente sem qualquer rotação entre cada passagem) e Bc (a amostra é rotacionada no mesmo sentido em 90° entre cada passagem) em temperatura ambiente e a morno. Por meio do resultado obtido verificou-se que na temperatura ambiente a rota Bc foi a que promoveu maior homogeneidade na microestrutura e enfraquecimento da textura após o quarto passe. O processamento do cobre por ECAP a morno promoveu um amolecimento das amostras e uma distribuição homogênea da dureza em ambas a rotas.Universidade Federal do Rio Grande2021-12-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1374310.14295/vetor.v31i2.13743VETOR - Journal of Exact Sciences and Engineering; Vol. 31 No. 2 (2021); 74-87VETOR - Revista de Ciências Exatas e Engenharias; v. 31 n. 2 (2021); 74-872358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGenghttps://periodicos.furg.br/vetor/article/view/13743/9144Copyright (c) 2021 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessYamada Magalhães, Hiron AkiraSouza, Talita GamaCardoso, Rodrigo Felix de AraujoSilva, Bruno RangelBrandão, Luiz Paulo2021-12-17T12:22:06Zoai:periodicos.furg.br:article/13743Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2021-12-17T12:22:06Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
Dureza e Textura do Cobre Eletrolítico Processado por ECAP em Temperatura Ambiente e a Morno
title Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
spellingShingle Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
Yamada Magalhães, Hiron Akira
Copper
ECAP
Crystallographic Texture
Dislocation Density
Microhardness
Cobre
ECAP
Textura Cristalográfica
Densidade de Discordâncias
Microdureza
title_short Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
title_full Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
title_fullStr Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
title_full_unstemmed Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
title_sort Hardness and Texture of Electrolytic Copper Processed by ECAP at Ambient and Warm Temperature
author Yamada Magalhães, Hiron Akira
author_facet Yamada Magalhães, Hiron Akira
Souza, Talita Gama
Cardoso, Rodrigo Felix de Araujo
Silva, Bruno Rangel
Brandão, Luiz Paulo
author_role author
author2 Souza, Talita Gama
Cardoso, Rodrigo Felix de Araujo
Silva, Bruno Rangel
Brandão, Luiz Paulo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Yamada Magalhães, Hiron Akira
Souza, Talita Gama
Cardoso, Rodrigo Felix de Araujo
Silva, Bruno Rangel
Brandão, Luiz Paulo
dc.subject.por.fl_str_mv Copper
ECAP
Crystallographic Texture
Dislocation Density
Microhardness
Cobre
ECAP
Textura Cristalográfica
Densidade de Discordâncias
Microdureza
topic Copper
ECAP
Crystallographic Texture
Dislocation Density
Microhardness
Cobre
ECAP
Textura Cristalográfica
Densidade de Discordâncias
Microdureza
description Among several severe plastic deformation (SPD) methods, the Equal Channel Angular Pressing (ECAP) process is one of the most popular. This process's main characteristic is producing materials with ultra-fine or nanometric grains. Due to these microstructural changes, it is possible to improve mechanical properties such as strength and ductility. In this perspective, the aim of the present work was to evaluate the variations of the mechanical hardness property associated with microstructural and textural changes of pure copper as a function of its processing by SPD via ECAP. For this, the material was submitted to four passes through routes A (the sample is repetitively pressed without any rotation between each pass) and Bc (the sample is rotated in the same sense by 90° between each pass) at cold and warm temperatures. Through the obtained result, it was verified that the ambient temperature of the Bc route was the one that promoted greater homogeneity in the microstructure and weakening of the texture after the fourth pass. On the other hand, warm processing of copper by ECAP promoted a softening of the samples and a homogeneous distribution of hardness in both routes.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/13743
10.14295/vetor.v31i2.13743
url https://periodicos.furg.br/vetor/article/view/13743
identifier_str_mv 10.14295/vetor.v31i2.13743
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/13743/9144
dc.rights.driver.fl_str_mv Copyright (c) 2021 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 31 No. 2 (2021); 74-87
VETOR - Revista de Ciências Exatas e Engenharias; v. 31 n. 2 (2021); 74-87
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1797041760326647808